
Software Analysis And Transformation

To parse or to marshall,
that is the question

Jurgen Vinju, Rodin Aarssen, Tijs Van Der Storm

Centrum Wiskunde & Informatica
TU Eindhoven

Swat.engineering BV

https://www.cwi.nl/research/groups/software-analysis-and-transformation
http://www.swat.engineering

SWAT - Software Analysis And Transformation

• Introducing Rascal; community

• Reuse of open compilers for programming languages;
problems & solutions, exchange of thoughts

• Job opportunities in research software and industrial
language engineering; opportunities

What is the agenda?

SWAT - Software Analysis And Transformation

Context: Rascal MPL
• Integrated Metaprogramming Language 2009

• The successor of ASF+SDF v1 1983, 2002 v2

• Fuses all required features for “metaprogramming”

reverse
engineering

compilation
code

generation
static

analysis

model
checking

test
generation

IDE
construction

decompilation

refactoring
mass

maintenance
re-engineering …

SWAT - Software Analysis And Transformation

Rascal is for everything meta

models

DSL
code

PL code

visuals facts

string
graphs
tables
trees

precise artefact
identification is key

diverse languages
everywhere

parse
extract
query
infer

transform
generate

SWAT - Software Analysis And Transformation

Integrated Meta Language

grammars for parsing and ASTs

templates for
generation

pattern matching
+ relational calculus

for query

There is a lot more
to discover :-)

open recursion=
no expression problem

URIs are
qualified names

Quickcheck is a language feature

SWAT - Software Analysis And Transformation

Bridging s*cks
• Most meta-programming activities end up in bridging “stuff”;

• Trap 1: “eat your down dog food”, make a DSL for every
aspect of meta-programming, then generate all the glue code
in between => semantic integration nightmare.

• Trap 2: “best tool for the job”, connect parser generators
with database engines, database engines with graph
visualizations, etc. => glue code grows out of hand

• Robust separation of concerns; but brittle re-integration.

• Solution: language-integrated meta-DSL/PL: Rascal.

• Today: we explore the limits of integration

SWAT - Software Analysis And Transformation

Quick Demo

DSL with VScode IDE

SWAT - Software Analysis And Transformation

Problem statement
• For reverse engineering, verification, re-engineering, refactoring, etc, …

• Parsers are the key enabling component, and then Name resolution
and (static) Type resolution come quickly after.

• For actual programming languages (C++) years of work.

• then there are dialects, versions, and customer extensions, …

• Creation of good (accurate & complete) parsers is too expensive

• Where to get good/excellent front-ends?

SWAT - Software Analysis And Transformation

Open compilers to the rescue

• Eclipse JDT: Java Development Toolkit

• Clang C/C++ & LLVM intermediate formats

• Eclipse CDT: C language Development Toolkit

• AdaCore’s libAdalang
• LFortran: open FORTRAN compiler based on LLVM

• libAST: Python’s own parser

• Babylon: multi-dialect JavaScript parser in Javascript

• owl ASM: JVM bytecode parser/generator

• … etc … “Open” as in extensible,
not as in open-source

SWAT - Software Analysis And Transformation

Open Compilers are New
• Before, the open-source GCC compiler suite was alone & closed

• Good parsers were golden assets which were not shared easily.

• Parser experts were well-paid, invisible, engines of companies

• Eclipse was a huge positive force in open language engineering.

• Their Java compiler was “high fidelity” and complete, and incremental.

• Today we find many open compilers. An open compiler nurtures an
ecosystem of people and projects around a programming language.

• Clang and the LLVM set a new standard in open compiler construction in
terms of stable API, fidelity, completeness, and accuracy.

SWAT - Software Analysis And Transformation

Open Compilers Gains

• Complete: entire language supported

• Varied: dealing with dialects and versions

• Tested: many users, many human testers

• Maintained: language evolution => compiler evolution

• Supported: communities on stackoverflow, slack, ..

SWAT - Software Analysis And Transformation

Open Compilers: Pains
• Not automatically integrated

• Lossy & noisy : abstraction, desugaring, pre-processing, …

• Ill-defined:

• stretched relation to concrete syntax

• order of nodes undefined/ill-defined

• Complex or over-simplified AST models

• No concrete syntax?!?

• Diverse host languages and target binaries

• Every open compiler is a “technological space”

• Is it not easier to just write a grammar?

SWAT - Software Analysis And Transformation

Bridged Compilers: Enabling
• “Java AIR” - Java Analysis in Rascal

• dozens of masters thesis and Ph.D. thesis chapters

• e.g. Distinguished Paper on Java Reflection at ICSE 2017 (Landman)

• decades of Software Evolution courses,1000’s students

• “ClAiR” - C{++} Language analysis in Rascal

• Large scale semi-automated migration of C++ test code (Philips
Healthcare) [Schuts, Aarssen in SP&E]

• “Lua AIR”, “PHP AIR”, “Python AIR”, “Ada AIR”

• Security analysis, architecture conformance,

• But: lots of work and no concrete syntax..

SWAT - Software Analysis And Transformation

• Does the gain of reusing an open compiler weigh
against the pain of bridging them?

• That depends on who you are talking to…

• The authors of the bridge: mwah.

• The users of the bridge: yeah!

show Java, C++ and Ada
AST models
in VScode

show Java, C++ and Ada
AST mappers

in VScode

SWAT - Software Analysis And Transformation

Solutions

• PhD thesis of Rodin Aarssen:
• Automatically deriving AST models and bridges from code

• Requires a pre-existing Rascal front-end for the host language

• Or, a reusable language workbench in the host language

• Lifting ASTs to SSTs “separator syntax trees”

• concrete syntax matching and construction

• Requires some parser trickery (wrapping, unwrapping)

• Most requested Rascal feature —ever— from all users.

SWAT - Software Analysis And Transformation

AST
Open

Compiler
Generated

Bridge

SST
Lifter

concrete
matching

abstract
matching

Unparser

(some other wiring details are elided)

Separator Syntax Trees:
building isomorphisms from homomorphisms

source

SWAT - Software Analysis And Transformation

Concrete Syntax Value
encapsulate field

refactoring
for C++

imagine this as two
humongous prefix

tree patterns.
It would have filled

several slides…

This one you can
explain to a C++ programmer,

the abstract one.. not.

SWAT - Software Analysis And Transformation

Back to JDT/Clair/Ada-air
• Ashim Shahi, Bas Basten, YT, et al. (CWI) wrote “JDT” library by hand

• Rodin Aarssen wrote & generated Clair (CWI, Swat.engineering)

• Damien DeCampos (Paris Saclay, Thales, TNO) wrote/generated Ada-air

source code
of CDT

open compiler

AST
model

of C/C++

Rascal AST
declarations

Java AST
mapper

Java AST
name resolver

Rascal Rascal

SWAT - Software Analysis And Transformation

Back to JDT/Clair/Ada-air
• Ashim Shahi, Bas Basten, YT, et al. (CWI) wrote “JDT” library by hand

• Rodin Aarssen wrote & generated Clair (CWI, Swat.engieering)

• Damien DeCampos (Paris Saclay, Thales, TNO) wrote/generated Ada-air

libadalang
parser generator

in Python AST
model
of Ada

Rascal AST
declarations

Ada AST
mapper

Ada AST
name resolver

compiler-generator
grammar-pass

plugin in Python

JNI-
bridge

AST
file

SWAT - Software Analysis And Transformation

Bridge Generation

• Code generation can automate the mapping from
one technological space (open compiler) to another
(Rascal), but the generators can not be reused much.

• And you need testing testing testing testing testing,
and did I mention testing?

SWAT - Software Analysis And Transformation

AST specification
• What is a good AST (for Rascal)? How to test an AST mapper?

• every node has source location information

• no gaps, no overlap between siblings

• parents locations (tightly) wrap children locations

• siblings are ordered from left to right
• all identifiers have resolved (fully qualified) URI names

• These are “one-liner” queries in Rascal code, and required for
separator syntax trees (concrete syntax) to work well.

• Execute them on a large body (first the standard library!) of
example code, open-source code. And then the real work begins.

SWAT - Software Analysis And Transformation

And then? Semantic models!
• Semantic models are derived (binary) relations for PL

• call graph rel[loc caller, loc callee]

• use-def rel[loc use, loc def]

• scopes rel[loc outer, loc inner]

• etc.

• Inspired by UML, FAMIX, KDM, RSF, URL’s and RDF

• Java M3 used a lot, others under development

• Compositional and language agnostic:

• cross-language, cross-architecture

• Constructed from AST traversal, fact extraction.

SWAT - Software Analysis And Transformation

Conclusion
• Rascal is an easy general meta-programming language based on grammars

and relational calculus and (concrete) string templates, functional/
structured programming, with open recursion.

• Open compilers are golden; bridging them is hard work

• Generating the bridge is necessary, but bespoke for every compiler

• Concrete syntax with SST tips the pain/gain balance.

• Concrete syntax is not only for concrete grammars anymore.

• Only write grammars for PL if there is no open-compiler.

• Still, always write grammars for DSLs (evolvability)

Caveat: SSTs are not in the `main` branch yet of Rascal.

SWAT - Software Analysis And Transformation

Community
• GitHub http://github.com/usethesource

• Master courses at Evolution, Compilers: UvA, TUE, RUG, Bergen, OU, …

• Industrial users in software eng, fin-tech, high-tech, government, …

• Spin-off Swat.engineering BV: DSL/PL {re}{verse}engineering

• User interfaces:

• VScode IDE, Language Server Protocol (extension generators)

• Jupyter(Lab) notebooks (kernel generators)

• Eclipse IDE Plugin (plugin generators)

• Commandline read-eval-print loop

• HTML5, elm-like interactions

• Maven, MOJO’s for compilation, test running, console

http://github.com/usethesource

SWAT - Software Analysis And Transformation

Jobs!
• Swat.engineering BV, Amsterdam/Almere) Davy Landman

• language engineers, sr/jr

• “DSLDI” with Rascal, VScode

• Reverse engineering

• Excellent rewards

• CWI SWAT group (pending funding proposal) RASCAL-LAB

• 5 language engineers in 2023-2028, Rascal, Java, /everything/

• 500+ components for empirical software engineering
• (inter)national collaboration network

