Software Analysis And Transformation

To parse or to marshall,
that is the question

Jurgen Vinju, Rodin Aarssen, Tijs Van Der Storm

Centrum Wiskunde & Informatica
TU Eindhoven
Swat.engineering BV

https://www.cwi.nl/research/groups/software-analysis-and-transformation
http://www.swat.engineering

What is the agenda!?

® Introducing Rascal; community

® Reuse of open compilers for programming languages;
problems & solutions, exchange of thoughts

® Job opportunities in research software and industrial
language engineering; opportunities

m SWAT - Software Analysis And Transformation

Context: Rascal MPL

® Integrated Metaprogramming Language 2009
® The successor of ASF+SDF v/ 1983,2002 v2

® Fuses all required features for “metaprogramming”
reverse S code static
engineering P generation analysis
- -
decompilation
checking W generation [construction

SWAT - Software Analysis And Transformation

Rascal is for everything meta

DSL
code

|]

PL code

parse
extract
query
infer
transform
generate

SWAT - Software Analysis And Transformation

Integrated Meta Language

module Syntax

extend lang: :std::Layout;
extend lang: :std::1d;

start syntax Machine = machine: State+ states;
syntax State = @Foldable state: "state" Id name Trans* out;
syntax Trans = trans: Id event ":" Id to;

module Analyze

import Syntax;

set[Id] unreachable(Machine m) {
r = { <ql,q2> | (State) state <Id gl1> <Trans* ts>" <- m.states,
(Trans) " <Id _>: <Id g2>" <- ts }+;
gs = [g.name | /State q :=m];
return { q | g <- gs, g notin r[gs[@]] };

module Compile
import Syntax;

str compile(Machine m) =
"while (true) {
" event = input.next();
switch (current) {
<for (q <- m.states) {>
case \"<q.name>\":
' <for (t <- q.out) {>
' if (event.equals(\"<t.event>\"))
current = \"<t.to>\";

' <}>

' break;
' <}>

"}

"

There is a lot more
to discover :-)

Quickcheck is a language feature

}
|\ CWL_

SWAT - Software Analysis And Transformation

Bridging s*cks

Most meta-programming activities end up in bridging “stuff’’;

Trap |:"eat your down dog food’, make a DSL for every
aspect of meta-programming, then generate all the glue code
in between => semantic integration nightmare.

Trap 2:"best tool for the job”, connect parser generators
with database engines, database engines with graph
visualizations, etc. => glue code grows out of hand

Robust separation of concerns; but brittle re-integration.
Solution: language-integrated meta-DSL/PL: Rascal.

Today: we explore the limits of integration

SWAT - Software Analysis And Transformation

Quick Demo

DSL with VScode IDE

Problem statement

® For reverse engineering, verification, re-engineering, refactoring, etc, ...

® Parsers are the key enabling component, and then Name resolution
and (static) Type resolution come quickly after.

® For actual programming languages (C++) years of work.

® then there are dialects, versions, and customer extensions, ...
® Creation of good (accurate & complete) parsers is too expensive

® Where to get good/excellent front-ends?

m SWAT - Software Analysis And Transformation

Open compilers to the rescue

Eclipse JDT: Java Development Toolkit

Clang C/C++ & LLVM intermediate formats

Eclipse CDT: C language Development Toolkit
AdaCore’s libAdalang

LFortran: open FORTRAN compiler based on LLVM
libAST: Python’s own parser

Babylon: multi-dialect JavaScript parser in Javascript

owl ASM: VM bytecode parser/generator

.. etc ... “Open” as in extensible,

not as in open-source

SWAT - Software Analysis And Transformation

Open Compilers are New

Before, the open-source GCC compiler suite was alone & closed
Good parsers were golden assets which were not shared easily.

Parser experts were well-paid, invisible, engines of companies

Eclipse was a huge positive force in open language engineering.

Their Java compiler was “high fidelity” and complete, and incremental.™

Today we find many open compilers. An open compiler nurtures an
ecosystem of people and projects around a programming language.

Clang and the LLVM set a new standard in open compiler construction in
terms of stable API, fidelity, completeness, and accuracy.

&

m SWAT - Software Analysis And Transformation

Open Compilers Gains

““CHERRY” ’

Complete: entire language supported

Varied: dealing with dialects and versions

Tested: many users, many human testers 2 N
Maintained: language evolution => compiler evolution

Supported: communities on stackoverflow, slack, ..

SWAT - Software Analysis And Transformation

Open Compilers: Pains

Not automatically integrated

Lossy & noisy :abstraction, desugaring, pre-processing, ...
® lll-defined:

® stretched relation to concrete syntax

® order of nodes undefined/ill-defined

Complex or over-simplified AST models

® No concrete syntax?!?

® Diverse host languages and target binaries

® Every open compiler is a “technological space”

® Is it not easier to just write a grammar?

|\ CWL_

SWAT - Software Analysis And Transformation

Bridged Compilers: Enabling

® “Java AIR” - Java Analysis in Rascal
® dozens of masters thesis and Ph.D. thesis chapters
® e.g. Distinguished Paper on Java Reflection at ICSE 2017 (Landman)
® decades of Software Evolution courses, |000’s students

® “CIAIR” - C{++} Language analysis in Rascal

® Large scale semi-automated migration of C++ test code (Philips
Healthcare) [Schuts,Aarssen in SP&E]

® “LuaAIR”,“PHP AIR”,“Python AIR”,Ada AIR”

® Security analysis, architecture conformance,

® But:lots of work and no concrete syntax..

|\ CWL_

SWAT - Software Analysis And Transformation

® Does the gain of reusing an open compiler weigh
against the pain of bridging them!?

® That depends on who you are talking to...
® The authors of the bridge: mwah.

® The users of the bridge: yeah!

show Java, C++ and Ada show Java, C++ and Ada
AST models AST mappers
in VScode in VScode

m SWAT - Software Analysis And Transformation

Solutions

® PhD thesis of Rodin Aarssen:
® Automatically deriving AST models and bridges from code
® Requires a pre-existing Rascal front-end for the host language
® Or,a reusable language workbench in the host language

® Lifting ASTs to SSTs “separator syntax trees”

® concrete syntax matching and construction

® Requires some parser trickery (wrapping, unwrapping)

® Most requested Rascal feature —ever— from all users.

m SWAT - Software Analysis And Transformation

abstract

matching

. source

Generated

concrete

Unparser matching

SWAT - Software Analysis And Transformation

Concrete Syntax Value

encapsulate field
Viz::e(?gzzlg‘class <Name c¢> { refaCtori ng

1
2

3 ' <Declx pre>

4 ' public: f C

5 ' <Decl* between> Or ++
6 ' <Type t> <Name n>;

7 ' <Decl* post>

8

9

l};\

= (Decl)*class <Name c> {
10 ' <Declx pre>
11 ' public:
12 ' <Decl* between>
13 ' private:
14 ' <Type t> <Name n>;
15 " public:
16 ' void <Name setter>(<Type t> val) {
17 ' <Name n> = val;
18 "}
19 ' <Type t> <Name getter>() {
20 ' return <Name n>;
21 "}
22 ' <Declx* post>
23 B
24 when !'hasPrivateOrProtected(between), Th'
25 str name := capitalize("<n>"), IS One you Can
26 Name setter := [Name]"get<name>", .
27 Name getter := [Name]"set<name>" eXPIaIn tO a. C++ Programmer,
28 }

the abstract one.. not.

SWAT - Software Analysis And Transformation

Back to |DT/Clair/Ada-air

® Ashim Shahi, Bas Basten,YT, et al. (CWI) wrote “)JDT” library by hand
® Rodin Aarssen wrote & generated Clair (CWI, Swat.engineering)

® Damien DeCampos (Paris Saclay, Thales, TNO) wrote/generated Ada-air

Rascal AST

declarations

source code AST
of CDT £l> model £l> Java AST
open compiler of C/C++

mapper

Java AST
name resolver

m SWAT - Software Analysis And Transformation

Back to |DT/Clair/Ada-air

® Ashim Shahi, Bas Basten,YT, et al. (CWI) wrote “)JDT” library by hand

® Rodin Aarssen wrote & generated Clair (CWI, Swat.engieering)

® Damien DeCampos (Paris Saclay, Thales, TNO) wrote/generated Ada-air

libadalang
parser generator
in Python

N

compiler-generator
grammar-pass
plugin in Python

AST
model
of Ada

Rascal AST
declarations

Ada AST JNI-
mapper bridge

|\ CWL_

Ada AST AST
name resolver file

SWAT - Software Analysis And Transformation

Bridge Generation

® Code generation can automate the mapping from
one technological space (open compiler) to another
(Rascal), but the generators can not be reused much.

® And you need testing testing testing testing testing,
and did | mention testing?

m SWAT - Software Analysis And Transformation

AST specification

® What is a good AST (for Rascal)? How to test an AST mapper?

® every node has source location information

® no gaps, no overlap between siblings

® parents locations (tightly) wrap children locations

® siblings are ordered from left to right

® all identifiers have resolved (fully qualified) URI names

® These are “one-liner” queries in Rascal code, and required for
separator syntax trees (concrete syntax) to work well.

® Execute them on a large body (first the standard library!) of
example code, open-source code.And then the real work begins.

|\ CWL_

SWAT - Software Analysis And Transformation

And then? Semantic models!

® Semantic models are derived (binary) relations for PL
® call graph rel[loc caller, loc callee]
® use-def rel[loc use, loc def]
® scopes rel[loc outer, loc inner]

® etc.

® Inspired by UML, FAMIX, KDM, RSF, URLs and RDF
® Java M3 used a lot, others under development
® Compositional and language agnostic:

o

cross-language, cross-architecture

® Constructed from AST traversal, fact extraction.

m SWAT - Software Analysis And Transformation

Conclusion

Rascal is an easy general meta-programming language based on grammars
and relational calculus and (concrete) string templates, functional/
structured programming, with open recursion.

Open compilers are golden; bridging them is hard work

® Generating the bridge is necessary, but bespoke for every compiler

® Concrete syntax with SST tips the pain/gain balance.
® Concrete syntax is not only for concrete grammars anymore.
® Only write grammars for PL if there is no open-compiler.

® Still, always write grammars for DSLs (evolvability)

Caveat: SSTs are not in the “'main” branch yet of Rascal.
W SWAT - Software Analysis And Transformation

) W4
Community aetal

GitHub http://github.com/usethesource

Master courses at Evolution, Compilers: UvA, TUE, RUG, Bergen, OU, ...

Industrial users in software eng, fin-tech, high-tech, government, ...

Spin-off Swat.engineering BV: DSL/PL {re}{verse}engineering

User interfaces:

VScode IDE, Language Server Protocol (extension generators)
Jupyter(Lab) notebooks (kernel generators)

Eclipse IDE Plugin (plugin generators)

Commandline read-eval-print loop

HTML5, elm-like interactions

swat
Maven, MOJO’s for compilation, test running, consol@ :

engineering

control your software

SWAT - Software Analysis And Transformation

http://github.com/usethesource

swat.
engineering J()bs!
control your software

® Swat.engineering BY, Amsterdam/Almere) Davy Landman

® language engineers, sr/jr
® “DSLDI” with Rascal,VScode
® Reverse engineering
® Excellent rewards
® CWI SWAT group (pending funding proposal) RASCAL-LAB
® 5 language engineers in 2023-2028, Rascal, Java, /everything/
® 500+ components for empirical software engineering

® (inter)national collaboration network

m SWAT - Software Analysis And Transformation

