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SWAT - Software Analysis And Transformation

• Introducing Rascal; community

• Reuse of open compilers for programming languages; 
problems & solutions, exchange of thoughts

• Job opportunities in research software and industrial 
language engineering; opportunities

What is the agenda?
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Context: Rascal MPL
• Integrated Metaprogramming Language 2009

• The successor of ASF+SDF v1 1983, 2002 v2

• Fuses all required features for “metaprogramming”
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Rascal is for everything meta

models

DSL 
code

PL code

visuals facts

string
graphs
tables
trees

precise artefact
identification is key

diverse languages
everywhere

parse
extract
query
infer

transform
generate
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Integrated Meta Language

grammars for parsing and ASTs

templates for
generation

pattern matching
+ relational calculus

for query

There is a lot more
to discover :-)

open recursion=
no expression problem

URIs are
qualified names

Quickcheck is a language feature
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Bridging s*cks
• Most meta-programming activities end up in bridging “stuff”;

• Trap 1: “eat your down dog food”, make a DSL for every 
aspect of meta-programming, then generate all the glue code 
in between => semantic integration nightmare.

• Trap 2: “best tool for the job”, connect parser generators 
with database engines, database engines with graph 
visualizations, etc.  => glue code grows out of hand

• Robust separation of concerns; but brittle re-integration.

• Solution: language-integrated meta-DSL/PL: Rascal. 

• Today: we explore the limits of integration
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Quick Demo

DSL with VScode IDE
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Problem statement
• For reverse engineering, verification, re-engineering, refactoring, etc, … 

• Parsers are the key enabling component, and then Name resolution 
and (static) Type resolution come quickly after.

• For actual programming languages (C++) years of work.

• then there are dialects, versions, and customer extensions, …

• Creation of good (accurate & complete) parsers is too expensive

• Where to get good/excellent front-ends?
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Open compilers to the rescue

• Eclipse JDT: Java Development Toolkit

• Clang C/C++ & LLVM intermediate formats

• Eclipse CDT: C language Development Toolkit

• AdaCore’s libAdalang
• LFortran: open FORTRAN compiler based on LLVM

• libAST: Python’s own parser

• Babylon: multi-dialect JavaScript parser in Javascript

• owl ASM: JVM bytecode parser/generator

• … etc … “Open” as in extensible, 
not as in open-source
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Open Compilers are New
• Before, the open-source GCC compiler suite was alone & closed

• Good parsers were golden assets which were not shared easily. 

• Parser experts were well-paid, invisible, engines of companies

• Eclipse was a huge positive force in open language engineering. 

• Their Java compiler was “high fidelity” and complete, and incremental.

• Today we find many open compilers.  An open compiler nurtures an 
ecosystem of people and projects around a programming language.

• Clang and the LLVM set a new standard in open compiler construction in 
terms of stable API, fidelity, completeness, and accuracy.
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Open Compilers Gains

• Complete: entire language supported

• Varied: dealing with dialects and versions

• Tested: many users, many human testers

• Maintained: language evolution => compiler evolution

• Supported: communities on stackoverflow, slack, ..
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Open Compilers: Pains
• Not automatically integrated 

• Lossy & noisy : abstraction, desugaring, pre-processing, …

• Ill-defined:

• stretched relation to concrete syntax 

• order of nodes undefined/ill-defined

• Complex or over-simplified AST models 

• No concrete syntax?!?

• Diverse host languages and target binaries

• Every open compiler is a “technological space”

• Is it not easier to just write a grammar?
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Bridged Compilers: Enabling
• “Java AIR” - Java Analysis in Rascal

• dozens of masters thesis and Ph.D. thesis chapters

• e.g. Distinguished Paper on Java Reflection at ICSE 2017 (Landman)

• decades of Software Evolution courses,1000’s students

• “ClAiR” - C{++} Language analysis in Rascal

• Large scale semi-automated migration of C++ test code (Philips 
Healthcare) [Schuts, Aarssen in SP&E]

• “Lua AIR”, “PHP AIR”, “Python AIR”, “Ada AIR”

• Security analysis, architecture conformance, 

• But: lots of work and no concrete syntax..
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• Does the gain of reusing an open compiler weigh 
against the pain of bridging them?

• That depends on who you are talking to…

• The authors of the bridge: mwah.

• The users of the bridge: yeah!

show Java, C++ and Ada 
AST models 
in VScode

show Java, C++ and Ada 
AST mappers 

in VScode
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Solutions

• PhD thesis of Rodin Aarssen:
• Automatically deriving AST models and bridges from code

• Requires a pre-existing Rascal front-end for the host language

• Or, a reusable language workbench in the host language

• Lifting ASTs to SSTs “separator syntax trees”

• concrete syntax matching and construction 

• Requires some parser trickery (wrapping, unwrapping)

• Most requested Rascal feature —ever— from all users.
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AST
Open

Compiler
Generated

Bridge

SST
Lifter

concrete 
matching

abstract 
matching

Unparser

(some other wiring details are elided)

Separator Syntax Trees:
building isomorphisms  from homomorphisms

source
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Concrete Syntax Value
encapsulate field 

refactoring
for C++

imagine this as two
humongous prefix

tree patterns. 
It would have filled 

several slides…

This one you can
explain to a C++ programmer,

the abstract one.. not.
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Back to JDT/Clair/Ada-air
• Ashim Shahi, Bas Basten, YT, et al. (CWI) wrote “JDT” library by hand

• Rodin Aarssen wrote & generated Clair (CWI, Swat.engineering)

• Damien DeCampos (Paris Saclay, Thales, TNO) wrote/generated Ada-air

source code
of CDT

open compiler

AST
model

of C/C++

Rascal AST
declarations

Java AST
mapper

Java AST
name resolver

Rascal Rascal
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Back to JDT/Clair/Ada-air
• Ashim Shahi, Bas Basten, YT, et al. (CWI) wrote “JDT” library by hand

• Rodin Aarssen wrote & generated Clair (CWI, Swat.engieering)

• Damien DeCampos (Paris Saclay, Thales, TNO) wrote/generated Ada-air

libadalang
parser generator

in Python AST
model
of Ada

Rascal AST
declarations

Ada AST
mapper

Ada AST
name resolver

compiler-generator
grammar-pass

plugin in Python

JNI-
bridge

AST
file
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Bridge Generation

• Code generation can automate the mapping from 
one technological space (open compiler) to another 
(Rascal), but the generators can not be reused much.

• And you need testing testing testing testing testing, 
and did I mention testing?
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AST specification
• What is a good AST (for Rascal)? How to test an AST mapper?

• every node has source location information

• no gaps, no overlap between siblings

• parents locations (tightly) wrap children locations

• siblings are ordered from left to right
• all identifiers have resolved (fully qualified) URI names

• These are “one-liner” queries in Rascal code, and required for 
separator syntax trees (concrete syntax) to work well.

• Execute them on a large body (first the standard library!) of 
example code, open-source code. And then the real work begins.
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And then? Semantic models!
• Semantic models are derived (binary) relations for PL

• call graph rel[loc caller, loc callee]

• use-def rel[loc use, loc def]

• scopes rel[loc outer, loc inner]

• etc.

• Inspired by UML, FAMIX, KDM, RSF, URL’s and RDF

• Java M3 used a lot, others under development

• Compositional and language agnostic: 

• cross-language, cross-architecture

• Constructed from AST traversal, fact extraction.
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Conclusion
• Rascal is an easy general meta-programming language based on grammars 

and relational calculus and (concrete) string templates, functional/
structured programming, with open recursion.

• Open compilers are golden; bridging them is hard work

• Generating the bridge is necessary, but bespoke for every compiler

• Concrete syntax with SST tips the pain/gain balance. 

• Concrete syntax is not only for concrete grammars anymore.

• Only write grammars for PL if there is no open-compiler.

• Still, always write grammars for DSLs (evolvability)

Caveat: SSTs are not in the `main` branch yet of Rascal.



SWAT - Software Analysis And Transformation

Community
• GitHub http://github.com/usethesource

• Master courses at Evolution, Compilers: UvA, TUE, RUG, Bergen, OU, … 

• Industrial users in software eng, fin-tech, high-tech, government, …

• Spin-off Swat.engineering BV: DSL/PL {re}{verse}engineering

• User interfaces:

• VScode IDE, Language Server Protocol (extension generators)

• Jupyter(Lab) notebooks (kernel generators)

• Eclipse IDE Plugin (plugin generators)

• Commandline read-eval-print loop

• HTML5, elm-like interactions

• Maven, MOJO’s for compilation, test running, console

http://github.com/usethesource
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Jobs!
• Swat.engineering BV,  Amsterdam/Almere) Davy Landman

• language engineers, sr/jr 

• “DSLDI” with Rascal, VScode

• Reverse engineering

• Excellent rewards

• CWI SWAT group (pending funding proposal) RASCAL-LAB

• 5 language engineers in 2023-2028, Rascal, Java, /everything/

• 500+ components for empirical software engineering
• (inter)national collaboration network


