
Language engineering for the
masses: business rules for the
EU Digital COVID-19 Certificate
LangDev Meetup, September 26th 2022

Meinte Boersma 

DSL Consultancy

The EU DCC
Quick facts

What & Why 
 A system 
 provided through the 
 EU eHealth Network (eHN) 
 to issue and verify digital proofs of 
 vaccination, test, or recovery, 
 to facilitate freedom of movement during the COVID-19 pandemic 
 in a GDPR-compliant way.

Introduced July 1st 2021 
Countries participating ~80 (EU MS + EFTA + “Third Countries”) 
Number issued ~6 billion 
Bigger than (WHO/ICAO), or compatible with (DIVOC) similar standards

DSL Consultancy

The EU DCC
What's in it

DSL Consultancy

DCC JSON payloadQR code

structure

*

*) Images reproduced from https://www.bartwolff.com/Blog/2021/08/08/decoding-the-eu-digital-covid-certificate-qr-code

*

https://www.bartwolff.com/Blog/2021/08/08/decoding-the-eu-digital-covid-certificate-qr-code

Decode a DCC with e.g. https://floysh.github.io/DCC-green-pass-decoder/

More info in this blog: https://www.bartwolff.com/Blog/2021/08/08/decoding-
the-eu-digital-covid-certificate-qr-code

The EU DCC
Decoding

DSL Consultancy

https://floysh.github.io/DCC-green-pass-decoder/
https://www.bartwolff.com/Blog/2021/08/08/decoding-the-eu-digital-covid-certificate-qr-code
https://www.bartwolff.com/Blog/2021/08/08/decoding-the-eu-digital-covid-certificate-qr-code
https://www.bartwolff.com/Blog/2021/08/08/decoding-the-eu-digital-covid-certificate-qr-code

The EU DCC
What's to verify

Technically valid Signature verifies through DSC + JSON up-to-spec

Fit-for-entry Is the DCC acceptable for its holder to enter a Country of Arrival 
 regarding its entry regulations? 
 
 
 Examples of business logic as business rules: 
 
 - The result of a test certificate must be negative. 
 - A first vaccination with the Janssen vaccine must be at least 28 days old. 
 - A second vaccination with Pfizer must be at most 270 days old 
 ...but minors are exempted!

DSL Consultancy

...or validation rules, or
conditions, or constraints...

The EU DCC
How to determine fit-for-entry

Sovereignty implies: 
 Every participating country can have their own 
 entry regulations ⇔ business rules

 
Problem: Determine fit-for-entry upfront  
 
Solution: Publish business rules prescribed 
 in an exchangeable, executable format on EU DCC Gateway

 
Design decision: Must be a JSON format

DSL Consultancy

Did someone say
“DSL”?!

The EU DCC
Software systems involved

• EU provides a central EU DCC Gateway server to publish DSCs to verify
signatures

• Every participating country is responsible for building their own:

1) Verifiers (apps) - open-source reference implementations are available

2) National Backend in-between verifiers apps and Gateway

3) Issuance infrastructure

• Development environments and infrastructure differs wildly across all
participating countries

DSL Consultancy

See: https://ec.europa.eu/health/sites/default/files/ehealth/docs/eu-dcc_validation-rules_en.pdf

Determines how each participating country:

• Should publish their business rules (in which format)

• Should run business rules when verifying a DCC

The EU DCC
Validation framework

DSL Consultancy

https://ec.europa.eu/health/sites/default/files/ehealth/docs/eu-dcc_validation-rules_en.pdf

1) Logic as JSON is “just data” ⇔ e.g. compliant with Apple's bytecode policy

2) JSON is well-supported across many platforms

3) No need to write a parser for a textual DSL (for many platforms)

4) E.g. JsonLogic already somewhat known, and allegedly “human-readable”, 
JSON format for expressing business logic

Prescribing business rules
Why a JSON format?

DSL Consultancy

https://jsonlogic.com/

Prescribing business rules
Why not use JsonLogic?

1) Not small: lots of operations, some with multiple variants (for convenience)

2) Behavior of implementations differ (⇔ no specification)

3) Custom operations are needed for EU DCC; 
e.g.: working with (partial) dates (YYYY, YYYY-MM), 
 and UCIs

The solution: CertificateLogic

DSL Consultancy

Prescribing business rules
What is CertLogic?

CertLogic is:

• A small (minimal) subset of JsonLogic (on which it's compatible), 
with a couple of domain-specific operations added

• Defined by: a specification of syntax + semantics, backed by a test suite

• On GitHub: https://github.com/ehn-dcc-development/eu-dcc-business-rules/
tree/main/certlogic

DSL Consultancy

A DSL? 
Probably not...

https://github.com/ehn-dcc-development/dgc-business-rules/tree/main/certlogic
https://github.com/ehn-dcc-development/eu-dcc-business-rules/tree/main/certlogic
https://github.com/ehn-dcc-development/eu-dcc-business-rules/tree/main/certlogic
https://github.com/ehn-dcc-development/eu-dcc-business-rules/tree/main/certlogic

CertLogic
What is CertLogic?

A CertLogic expression evaluates (or: “is interpreted”) against given data - 
 typically, the DCC's payload + external parameters + value sets. 
 
As a function: 
 
 evaluate: ⟪expr⟫ x ⟪data⟫ → ⟪result⟫ | Error 
 
⟪expr⟫ and ⟪data⟫ are in JSON format 
⟪result⟫ is usually JSON, but can contain Date objects 
 
An error is thrown if the expression is invalid, 
or a type incompatibility is encountered.

DSL Consultancy

Haskell people can read this “x”
as “→”

CertLogic
The “grammar”

Valid CertLogic expressions are:

• a simple literal: a ⟪boolean⟫, an ⟪integer⟫, or a "⟪string⟫"

• an operation of the form 
 
 { "⟪operation⟫": [⟪operand1⟫, ⟪operand2⟫, ...] }

• an array of CertLogic expressions: 
 
 [⟪expr1⟫, ⟪expr2⟫, ...]

DSL Consultancy

CertLogic
Operations (1/3)

• data access: { "var": "⟪path⟫" } 
Semantics: e.g. path = "v.0.f" evaluates to 1 on 
 { "v": [{ "f": 1 }] }

• if: { "if": [⟪guard⟫, ⟪then⟫, ⟪else⟫] }

• and: { "and": [⟪operand1⟫, ⟪operand2⟫, ...] }

• not: { "!": [⟪operand⟫] }

• reduce: { "reduce": [⟪operand⟫, ⟪lambda⟫, ⟪initial⟫] }

DSL Consultancy

CertLogic
Operations (2/3)

• equality: { "===": [⟪operand1⟫, ⟪operand2⟫] }

• membership: { "in": [⟪operand⟫, ⟪array⟫] }

• integer and date comparisons: 
{ "⟪operator⟫": [⟪operand1⟫, ⟪operand2⟫⟦, operand3⟧] }

• integer plus: { "+": [⟪operand1⟫, ⟪operand2⟫] }

DSL Consultancy

CertLogic
Operations (3/3)

• working with dates:

• { "plusTime": [⟪operand⟫, ⟪amount⟫, ⟪unit⟫] } 
Semantics: e.g. "2022-04-01" + 713 days = 2023-03-15

• { "dccDateOfBirth": [⟪operand⟫] } 
Semantics: “round up” a partial DOB YYYY⟦-MM⟧ to latest possible date, 
e.g. "2002" -> 2002-12-31, and "2004-02" -> 2004-02-29

• { "extractFromUVCI": [⟪operand⟫, ⟪index⟫] } 
Semantics: ("URN:UCI:01:NL:M6B3Y3663FA6REKP6KRL42#9", 2) -> "M6B3Y3663FA6REKP6KRL42"

DSL Consultancy

CertLogic
Operations (4/3)

“Where's my OR?!” 
 
Desugaring to the rescue: 
 
 { "or": [⟪expr1⟫, ⟪expr2⟫] } 
 
 === { "if": [⟪expr1⟫, ⟪expr1⟫, ⟪expr2⟫] }

DSL Consultancy

CertLogic
Tooling

CertLogic-Fiddle is a minimalistic “IDE”. Features:

• Input: CertLogic expression and data

• Output: validation of expression, evaluation result, compact notation

• Can share examples through URLs, such as this one

DSL Consultancy

https://certlogic-fiddle.vercel.app/
http://certlogic-fiddle.vercel.app/?expr=%7B%22if%22:%5B%7B%22var%22:%22t.0%22%7D,%7B%22===%22:%5B%7B%22var%22:%22t.0.tr%22%7D,%22260415000%22%5D%7D,true%5D%7D&data=%7B%22t%22:%5B%7B%22tr%22:%22260415000%22%7D%5D%7D

CertLogic
Why not make it a “real” DSL (1/2)

Real, as in:

• nice, human-readable syntax (not JSON...)

• editor

• type system (basically JSON Schema)

• IDE

• define and run tests

DSL Consultancy

CertLogic
Why not make it a “real” DSL (2/2)

Reasons:

• Lack of time

• Wildly differing developer environments

• Strong network through EU's eHN

• Debugging using CertLogic Fiddle worked really well

• Set of template rules was provided

DSL Consultancy

CertLogic
Partial evaluation

Goal 
 Determine automatically which vaccines are accepted by a country, from their business rules

Idea 
 Mark certain values (mp, dt) in the ⟪data⟫ as Unknown 
 Modify evaluate function so it doesn't reduce an ⟪expr⟫ 
 that would produce Unknown (or any value that's not a CertLogic expression)

Usage 
 Partially evaluate and(⟪all Acceptance rules of a country⟫) against a DCC 
 payload with dt = Unknown to derive which vaccines are accepted, 
 and what their validity ranges are

Problem 
 First have to make evaluate endomorphic by extending CertLogic a bit

DSL Consultancy

Analysing business rules
Using partial evaluation

DSL Consultancy

https://github.com/ehn-dcc-development/eu-dcc-business-rules-analysis

https://github.com/ehn-dcc-development/eu-dcc-business-rules-analysis

Prescribing business rules
Things that went well

1) Short time-to-market In ~2 months from 0 to:

• CertLogic spec + implementations

• validation framework - how business rules should be published and run

• business rules published on EU DCC Gateway by ~25 countries

• implemented in many verifier apps

2) Small spec (and keeping it that way) Allowed quick implementation and controlled evolution,
but flexible enough to adapt to changing requirements

3) Analysis Analysed rules using language engineering techniques (partial evaluation)

4) Versioning Versioned specification and implementations independently

DSL Consultancy

Prescribing business rules
Things that could have gone better

1) Limited scope 
Only small part of entry regulations “fit” in validation framework, which was
hard to extend.

2) Adoption Not all countries participating in the EU DCC share their entry
regulations using the validation framework. Reasons:

i) Only small part of entry regulations covered - fear of “false positives”

ii) The developer experience (DX) is not so good

DSL Consultancy

Speaker's links

Email: meinte.boersma@gmail.com

Book: https://www.manning.com/books/business-friendly-dsls

GitHub: https://github.com/dslmeinte/

DSL Consultancy

mailto:meinte.boersma@gmail.com
https://www.manning.com/books/business-friendly-dsls
https://github.com/dslmeinte/

