
Tony Clark, Ulrich Frank, Daniel Töpel, Michael Bartels, Luca Mattei | Multi-Level Language Engineering

Multi-Level Language Engineering, Modeling and Software
Development with the FMMLx and the XModelerML

1

Tony Clark

Ulrich Frank

Daniel Töpel

Michael Bartels

Luca Mattei

Before We Start …

Tony Clark, Ulrich Frank, Daniel Töpel, Michael Bartels, Luca Mattei | Multi-Level Language Engineering2

What is the difference between a model and a modeling language?

Why would you generate code from models?

Are objects on M0 parts of models?

What is the difference between programs and models?

What is your vision of future enterprise software?

Overview

Tony Clark, Ulrich Frank, Daniel Töpel, Michael Bartels, Luca Mattei | Multi-Level Language Engineering3

 Motivation

 FMMLx

 XModelerML

□ Components

□ Integrated Development and Use of Languages, Models and Apps

 Development and Use of Textual DSLs

Background: DSMLs for Enterprise Modeling

Tony Clark, Ulrich Frank, Daniel Töpel, Michael Bartels, Luca Mattei | Multi-Level Language Engineering

DSML Development: Sources of Frustration

Tony Clark, Ulrich Frank, Daniel Töpel, Michael Bartels, Luca Mattei | Multi-Level Language Engineering5

 lack of expressiveness

 unnatural dichotomy of language and model

 fundamental design conflicts

 pain of model/code synchronization

 ….

Lack of Expressiveness

Tony Clark, Ulrich Frank, Daniel Töpel, Michael Bartels, Luca Mattei | Multi-Level Language Engineering6

qualityLevel: Level
serialNum: String
salesPrice: Float

PeripheralDevice

pagesPerMinute: Boolean
color: Boolean
resolution: Integer
serialNum: String
salesPrice: Float

Printer

serialNum: String

XP-600C

minQualityLevel: Level
qualityLevel: Level
serialNum: String
salesPrice: Float

Product

Generalization or Classification?

Where to specify that every
process execution has a start
time?

Process

OrderManagement

p1: OrderManagement

Lack of Expressiveness

Tony Clark, Ulrich Frank, Daniel Töpel, Michael Bartels, Luca Mattei | Multi-Level Language Engineering7

qualityLevel: Level
serialNum: String
salesPrice: Float

PeripheralDevice

pagesPerMinute: Boolean
color: Boolean
resolution: Integer
serialNum: String
salesPrice: Float

Printer

serialNum: String

XP-600C

minQualityLevel: Level
qualityLevel: Level
serialNum: String
salesPrice: Float

Product

minQualityLevel = 4

qualityLevel = 6

pagesPerMinute: 90
resolution = 600
salesPrice = 99.99
…

Every (meta) class is an object (has state,
can execute operations).

There are multiple levels of classification.

Instantiation may be deferred to lower
levels.

Sometime no clear distinction

between instantiation or

specialisation – both make sense.

numOfModels():Integer

numOfModels = 8

How could that be implemented?

Iron Law: “Express knowledge at the highest level.”

Distinction of Language and Model

Tony Clark, Ulrich Frank, Daniel Töpel, Michael Bartels, Luca Mattei | Multi-Level Language Engineering8

Document
Invoice

Business Process

ProductGoal

Intention

Procurement Process

Organisational Unit

Department

Employee

Project
ERP System

Risk
CEO

Marketing
DepartmentApplication

System

Language concept or language application?

Traditional paradigm requires distinction, but how?

Power-Generality Conflict

Tony Clark, Ulrich Frank, Daniel Töpel, Michael Bartels, Luca Mattei | Multi-Level Language Engineering

9

Computer
Hardware

Peripheral
Device

Printer

CPL-844

Peripheral
Device

PrinterCPL-844

Class Class

Physical
Product

GPML DSML MLM

language concept
language application (instantiation)

ra
n

ge
 o

f
re

u
se

p
ro

d
u

ct
iv

it
y

o
f

re
u

se

+

+ -

-

Computer
Hardware

DSML development usually from scratch!

Fundamental Design Conflicts

Tony Clark, Ulrich Frank, Daniel Töpel, Michael Bartels, Luca Mattei | Multi-Level Language Engineering10

 Semantics promotes reuse.

 Semantics compromises reuse.

 Semantics promotes integration.

 Semantics compromises integration.

 Semantics promotes flexibility.

 Semantics compromises flexibility.

range of reuse (economies of scale)

productivity of reuse

efficiency of communication

openness of communication

through abstraction

„loose coupling“

Problem: Synchronization of Model and Code

Tony Clark, Ulrich Frank, Daniel Töpel, Michael Bartels, Luca Mattei | Multi-Level Language Engineering11

generate

Modelling Environment Progamming Environment

Model Code

yearsOfAge() : Integer

firstName: String
lastName: String
custID: String
dateOfBirth: Date

Customer
class Customer

{

String firstName;

String lastName;

Date dateOfBirth;

public int yearsOfAge()

....

}

M0 M1

M0Program instance

M1

name: String

Class

name: String

Attribute

1,1 0,*

Meta-Model

Why is there need to generate code anyway?

Multi-Level Modeling to the Rescue

Tony Clark, Ulrich Frank, Daniel Töpel, Michael Bartels, Luca Mattei | Multi-Level Language Engineering12

 new language paradigm

 allows for an arbitrary number of classification levels

 ... and deferred instantiation

 Every class at any level is an object.

 first introduced in 2001 by Atkinson and Kühne

 with roots going back to the early 90s

 focus mainly on modelling, not on programming languages

Inspired by Actual Use of Technical Languages

Tony Clark, Ulrich Frank, Daniel Töpel, Michael Bartels, Luca Mattei | Multi-Level Language Engineering13

Organisational Unit

Position Committee

Department

Team

Market Analyst

Quality Circle

Department

Institute

Dean

Faculty Council

Marketing
Department

Quality Circle
Product PG 1

Market
Analyst MA2

Market
Research Team

Department
of Physics

Dean of Dep.
of Physics

Physics Faculty
Council

Rector’s
Office

Product

Unit

Property

Composed
Product

Part

Compound
Product

Ingredient

Aggregation
State

Beverage

ContainerWater

Cross Racer
R3

Saddle SR1

Wheel AT1

Beer Bottle

Malt Alcohol

Bicycle Wheel

Saddle

Cross Racer R3
Serial No: CR

592

Cross Racer R3
Serial No: CR

593

„Beck‘s“

0,33
Bottle

0,5
Bottle

Language hierarchies with variable number of levels

D
SM

L
„t

e
xt

 b
o

o
k“

„l
o

ca
l d

ia
le

ct
“

„l
o

ca
l n

am
e

sp
ac

e
“

Foundations

Tony Clark, Ulrich Frank, Daniel Töpel, Michael Bartels, Luca Mattei | Multi-Level Language Engineering14

 XModeler
□ language engineering workbench

□ core language (Xcore) both reflexive and extensible

□ allows for an arbitrary number of (implicit) classification levels, but does
not provide explicit levels and deferred instantiation

 both an instance of itself and a basis for defining a wide
range of co-existing language variants – like the FMMLx

 common representation of programs and models

 models at any level executable

 XModelerML is a version of the XModeler that implements
the FMMLx and corresponding tooling

FMMLx Multi-level modeling and execution language

XModelerML Multi-level engineering, modeling, programming

and execution environment, enables creation and

use of graphical and textual DSL

FMMLx: Metamodel & Generic Notation

Tony Clark, Ulrich Frank, Daniel Töpel, Michael Bartels, Luca Mattei | Multi-Level Language Engineering15

doc: String

id: String

Doc

body: String

id: String

Constraint

name: String

type: Classifier

isIntrinsic: Boolean

instLevel: Integer

isCore: Boolean

Attribute

0,*

0,*

0,* 0,*

XCore

(simplified)

Interface Layer

Mn

1..1

0,1

0,1

1,1

2,2

1,1

0,*

extended features

0,*

0,*

uinherits from

0,*

3

isIntrinsic: Boolean

instLevel: Integer

 isIntrinsic: Boolean

 instLevel: Integer

MetaClass

allInstances: Set

allAssociations: Set

createAssociation(...): Association

level = n

level: Integer

MetaAdaptor

new(): Object

newAtLevel(l: Integer): Object

FMML
x

name: String

codeBox: Element

traced: Element

isIntrinsic: Boolean

instLevel: Integer

isCore: Boolean

CompiledOperation

u

part of

u

part of

u

part of

context Class

@Constraint nonCyclicInheritance

 not self.allParents().includes(self)

end

C2

C2

lowerBound: Integer

upperBound: Integer

hasUpperBound: Boolean

CollectionMult

allParents() returns

all superclasses.

type: AssocType

Association

0,1

Object

get(name: String): Object

set(name: String, value: Object): Object

copy(): Object

save(fileName: String): Object

name: String

isIntrinsic: Boolean

instLevel: Integer

isNavigable: Boolean

isCore: Boolean

End

2,2
0,*

0,* 1,1

u

part of

0,*

0,*

new()

isAbstract: Boolean

isRole: Boolean

Class

Background: Raising the Level of Classification

Tony Clark, Ulrich Frank, Daniel Töpel, Michael Bartels, Luca Mattei | Multi-Level Language Engineering16

name: String

type: Classifier

isIntrinsic: Boolean

instLevel: Integer

isCore: Boolean

Attribute

0,*

0,*

name: String

End

0,1

0,1

1,1

2,2

0,*0,*
0,*

0,*

name: String

isIntrinsic: Boolean

instLevel: Integer

isCore: Boolean

Association

lowerBound: Integer

upperBound: Integer

CollectionMult

uinherits from

0,*

0,*

name: String

codeBox: Element

traced: Element

isIntrinsic: Boolean

instLevel: Integer

isCore: Boolean

CompiledOperation

new() : Object

name: String

isAbstract: Boolean

Class

Object

get(name: String): Object

set(name: String, value: Object): Object

copy(): Object

save(fileName: String): Object

u

part of
u

part of

M2

numberOfInstances: Integer

OrderManagement

name: String
automated: Boolean

Process
M2

M1

automated: Boolean

Process

Architecture: Ballpark View

Tony Clark, Ulrich Frank, Daniel Töpel, Michael Bartels, Luca Mattei | Multi-Level Language Engineering17

Meta Model (Meta-
Modeling/Programming
Language)

Objects at any
Level

(Languages,
executable models,

programs)

Representations

GUIs ..

Text Diagram

Code

Every class is an object!

XModelerML: Components of the Environment

Tony Clark, Ulrich Frank, Daniel Töpel, Michael Bartels, Luca Mattei | Multi-Level Language Engineering18

instance browser

control center

model browser

console

diagram editor

Conclusions

Tony Clark, Ulrich Frank, Daniel Töpel, Michael Bartels, Luca Mattei | Multi-Level Language Engineering19

 FMMLx allows for
□ conjoint design of models and modeling languages

□ at an arbitrary number of classification levels

 thus
□ enabling the specification of DSLs with more generic DSLs

□ hence, contributing to productivity, flexibility and integrity

□ relaxing fundamental design conflicts

 XModelerML enables
□ common representation of models and code

□ execution of models at any level

□ navigation from GUI to models (diagram or textual) at runtime

□ self-referential architectures of applications

□ contributes to user empowerment

Future Research

Tony Clark, Ulrich Frank, Daniel Töpel, Michael Bartels, Luca Mattei | Multi-Level Language Engineering20

 Further development of multi-level modeling method

 Maintenance/management of multi-level models

 New version of editor for defining graphical notations

 Multi-level modeling of processes (dynamic abstractions)

 Reconstruction of existing DSMLs for enterprise modelling

 Prototypical implementation of self-referential ERP system

Download of Tool, Models, Screencasts ..

Tony Clark, Ulrich Frank, Daniel Töpel, Michael Bartels, Luca Mattei | Multi-Level Language Engineering21

https://www.wi-inf.uni-duisburg-essen.de/LE4MM/

