
Enriching Models with Extra-Functional Information
Or: How to abuse modelling-languages for unintended purposes

Sebastian Stüber

Software Engineering

RWTH Aachen University

Germany

https://se-rwth.de/

https://se-rwth.de/

Sebastian Stüber | Software Engineering | RWTH Aachen2

• Future-Proofing Languages
− Longevity by accommodating unforeseen use-cases.

• Stable Language
− Dependable foundation for long-term development

• Minimal Language
− Easier maintenance and support

− Reduces learning curve for new users

• Empowering Tool Developers
− Vibrant ecosystem around language

How This Talk Benefits YOU

Language Developer

Tool Developer

Modeler

Enable Tool-Developers to handle new use-cases

Sebastian Stüber | Software Engineering | RWTH Aachen3

• Workflow-Language
− Model tasks and dependency between tasks

− Minimalistic demonstration

• Annotate tasks with energy consumption

• Analyse Workflows for total energy consumption
− Idea: optimize workflows

Running Example – Workflow with Sustainability Information

Buy Food Cook Eat

2 kW*h 500 W*h 0 W*h

WF

Sebastian Stüber | Software Engineering | RWTH Aachen4

• What are stereotypes?
− <<energy=“2 kW*h”>>

• Benefits :
− Integration: Seamlessly information within the model itself.

− Easy for Language Developer

• Downsides:
− Spelling-Mistakes hard to detect

− Must be present in modelling-language

− Cluttered Models: Model overloaded with extraneous

information

Simple Way of Adding Information – Stereotypes

WF

Stereotype
«energy=2 kW*h»

Buy Food

Sebastian Stüber | Software Engineering | RWTH Aachen5

• What is Tagging?
− A separate file that references elements of the original

model.

− Adds extra information without modifying the core model.

• Benefits:
− Unchanged Core Language

− Validation of Names

− Separation of Concerns – separates model annotations.

− Reusability: Independent of modelling-language

• Downsides:
− Requires Reference Mechanism

− Synchronization Effort

− Readability

Declutter the Model – Tagging in Separate File

Eating.wf

Other.tagEating.sus.tag

Tagging

Sebastian Stüber | Software Engineering | RWTH Aachen6

• What is it?
− A separate file that lies alongside the original model.

− A new DSL tailored for the specific use-case.

• Benefits
− Customization to use-case

− High readability

• Downsides:
− Higher initial effort than tagging

− Requires reference mechanism

− Synchronization Effort

Create a New Domain-Specific-Language

Eating.wf

Eating.sus

New DSL

Sebastian Stüber | Software Engineering | RWTH Aachen7

• What is it?
− New information is embedded within the model.

− The language is modified specifically for the use-case.

• Benefits:
− Tool Compatibility: Inheritance of Java data structure allows

reuse

− Integration: Seamlessly information within the model itself.

• Downsides:
− Cluttered Models: Model overloaded with extraneous

information

− Transformation to original model sometimes necessary

− More effort & complexity

Extend Original Language while Keeping Some Compatibility

Original.mc4

Extended.mc4

gen

gen

Original.java

Extended.java

Grammars

Sebastian Stüber | Software Engineering | RWTH Aachen8

• For analysis, generators, or other tools, the

location of additional information is

irrelevant.

• Benefits:
− Flexibility in approach selection

− Consistent access method

− Simplified maintenance

− Easy interchangeability

There are Many Good Ways – Abstract from It!

«abstract»

SustainableStorage

TagStorage StereotypeStorage

...

CD

Analysis

Sebastian Stüber | Software Engineering | RWTH Aachen9

import lombok.*;

@Builder

public class Person {

private final String name;

@Getter(AccessLevel.PROTECTED)

private int age;

Person(String name, int age) {

this.name = name;

this.age = age;

}

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Java• What are Java Annotations?
− Metadata added to Java code elements

− Provide additional information to the compiler and

runtime.

− E.g. Spring, Hibernate, JUnit, Lombok

• Benefits:
− Code Simplification: Reduce boilerplate code

− Tool Integration

• Downsides:
− Not realistic for many DSLs: Requires a powerful and

flexible language

− Hard to debug

With Great Power Comes Great Responsibility – Java Annotations

Annotation -- Lombok

Sebastian Stüber | Software Engineering | RWTH Aachen10

Personal Use-Cases:

• Stereotypes: Code-Generator configuration, State-Invariants for analysis

• Tagging: As internal data structure within tool

• Separate DSL: Effect analysis for SysML systems

• Extend DSL: MontiArc4Verification

Questions for you:

• Did you ever want to add additional information that the modelling-language didn’t support?

• How do you see the benefits / downsides?

Conclusion – Experience

	Standardabschnitt
	Folie 1: Enriching Models with Extra-Functional Information
	Folie 2: How This Talk Benefits YOU
	Folie 3: Running Example – Workflow with Sustainability Information
	Folie 4: Simple Way of Adding Information – Stereotypes
	Folie 5: Declutter the Model – Tagging in Separate File
	Folie 6: Create a New Domain-Specific-Language
	Folie 7: Extend Original Language while Keeping Some Compatibility
	Folie 8: There are Many Good Ways – Abstract from It!
	Folie 9: With Great Power Comes Great Responsibility – Java Annotations
	Folie 10: Conclusion – Experience

