
https://langdevcon.org

Seville 17-19 October, 2024

Enhancing hardware design through
domain-specific language tools for
higher abstraction

Luca De Santis / Micron Technology Italy

C8B2

https://langdevcon.org/

The context

 For many decades, hardware design has been driven by the
processor model: addressing problems at the software level
and executing code on general-purpose hardware.

 With the end of Dennard scaling, the focus shifted toward
multi-core and multi-processor architectures.

 To achieve better performance, reduce costs, and lower
power consumption, we have now entered the era of
heterogeneous computing. In this approach, complex
digital systems are composed of a blend of standard
processors, customized processors, storage media,
complex state machines, reconfigurable hardware and ad-
hoc accelerators.

Turing Lecture 2018

The problem

 Hardware design relies on the concepts of Hardware Description Language (HDL) and automatic
synthesis.

 In the 80s, two major HDLs were introduced: Verilog and VHDL, and today all industrial-level chip
development flows are based on these ones.

 However, as system complexity grew, the limitations of these older languages became evident. This
highlighted the need to:

 Increase the level of abstraction in hardware design.

 Introduce “stronger typing for wires” in HDLs, preventing arbitrary connections between
components. Some researchers have pointed out that hardware designers are now facing
challenges comparable to the "goto" problem that software engineers encountered during the early
development of programming languages.

Some solutions: the EDA landscape
Over the years, several attempts have been made to move beyond the digital abstraction in hardware design:

 High-level synthesis: Focused on algorithms described using programming languages. It has been highly
successful in the DSP domain and data-intensive systems but is not as well suited for control-intensive
systems.

 Processor synthesis: Centered on defining instruction sets. This approach involves expensive tools, and
having the compiler integrated in the process adds significant value.

 Hardware-software co-design and co-synthesis: Relies on heuristics, it is not yet a fully developed or
standardized methodology.

Logic Synthesis (RTL Verilog/VHDL)

«Beyond Verilog» abstractions (?)

Processor

Synthesis

Hardware/Software Co-

design
High-level synthesis

Physical Design

ASIC FPGA

Configuration map

The real problem

«Beyond Verilog» abstractions are evolving toward incorporating software engineering concepts into
hardware design, but:

 Hardware engineers generally do not have the same mind-set as software engineers.

 Hardware design requires strict adherence to fundamental constraints:

 Area/performance/power trade-off

 Fine tuning of timing (low level synchronizations, physical delays)

 Strict control of «states», to avoid undesired hidden ones and deadlocks

 Practical tools for definition of customized instruction sets and communication protocols

 Readability of synthesized code for debug

3rd Summit on Advances in Programming Languages (SNAPL 2019)

The challenge

 There is a common feeling that the right way to face digital systems complexity is by increasing the level
of abstraction of hardware description languages to stimulate a «correct-by-design» approach

 A common objection is that abstraction means losing details, but looking at the famous Dijkstra‟s citation:
“The purpose of abstraction is not to be vague, but to create a new semantic level in which one
can be absolutely precise”

 Can we adopt concepts and tools from the domain-specific language
(DSL) field to meet this need?

 Key point is: to capture what is the «semantics» of digital systems representations at any level of
description

One example
 The simplest useful object in hardware design is the D-type flip-flop: it

samples a signal when a clock event occurs; on the right is reported a
description in synthesizable Verilog

D-type

flip-flop

clock

data

reset

out

always @ (posedge clock or

posedge reset)

 if (reset) out = 0 ;

 else out = data ;

class ExampleModule extends Module {

 val io = IO(new Bundle {

 val d = Input(Bool()) // Data input

 val q = Output(Bool()) // Output

 })

 // Define the register with reset behavior

 val reg = withReset(reset.asBool) {

 RegNext(io.d, init = false.B) // Initialize the register to 'false'

(reset state)

 }

 // Connect the output

 io.q := reg

}

Domain clock, reset {

 Reg out = data {init(0)};

}

 The problem here is that clock, reset and data can be everything;
constraints on these signals are not defined at language level but on
post-processing tools

 Here is how Chisel (one of the most promising languages aimed to
increase the level of abstraction of hardware) defines a D-type flip-flop

 Here is what a hardware designer
would like to have: explicit
declaration of clock and reset
domains

Another example

 A system composed of a memory and a counter that flushes data according
to the value of an input signal «go»

Memory

clock

address

read

out

Output

register

Counter

clock

go

Memory mem (.addr(cnt),…) ; // connect memory address to counter

always @ (posedge clock or posedge reset)

 if (reset) begin cnt = 0 ; read = 0 ; end

 else if (go) begin cnt = cnt+1 ; read = 1 ; end

 else begin cnt = cnt ; read = 0 ; end

if go -> cnt.incr() , mem.read(cnt) ;

 This is an example of a very basic memory driver, made simple by introducing the concept of an
«action» over a block, overtaking the practice of just «wiring» blocks

 Here is what a hardware designer would like to have: actions instead of
wiring

One more example
 Finite state machine (FSM) is one the fundamental

concepts in hardware design. Defining real-world state
machines can be highly challenging due to the need for
exhaustive coverage of “state/input/next state/output“ tuples
and the difficulty of identifying and managing errors.

 This is an example of a simple state machine: the classical
exercise of a recognizer of strings composed of initial
symbol „a‟ followed by an arbitrary number of symbols „b‟
and a final symbol „c‟

Table(state, in -> state, out) {

 idle, start -> S1 ;

 S1 , ‘a’ -> S2 ;

 S2 , ‘b’ -> hold ;

 S2 , ‘c’ -> S3 , done;

 S3 , any -> hold ;

 any, any -> error ;

}

S1 S2 S3
a c

b

if (state == idle)

 if (start) state = S1 ;

 else state = idle ;

else

 if (state == S1 & in==‘a’) state = S2 ;

 else if (state == S2 & in==‘b’) state = S2 ;

 else if (state == S2 & in==‘c’)

 begin

 state = S3 ;

 done = 1 ;

 end

 else if (state == S3) state = S3 ;

 else state = error ;

 Here is what a hardware designer would
like to have: tables instead of code with
special symbols like „any‟ and „hold‟ ;

start

done

The proposal
Explicit definition of clock and reset domains

 Easier and cleaner definition of registers and sequential circuits

 Automatic synchronization between domains

Actions
 Easier and cleaner definition of interfaces between some standard building blocks like

memories, stacks and queues

 High-level description of protocols

Enhanced state transition tables
 Compact definition of complex state machines and customized instruction sets

 Easier error detection

 Helps to avoid unwanted hidden states

Design Criteria for a language
 One file – One module (easy prototyping, forces engineers to be organized)

 Common HDL features:
 Hierarchical instances, in/out ports, parameterization

 Basic digital types (bit strings, bin/hex literals)

 Typical digital operators (wires concatenation and slicing)

 Strong typing of wires, registers and memories

 Explicit clock and reset domains

 Clear differentiation between «stateless» vs. «stateful» objects

 Standard storage media (memories, stacks, queues…) and access protocols

 Multidimensional array access (for ML/AI accelerators)

 Enhanced transition tables with actions

 Iterators for indexed declarations

A possible flow (ANTLR+Python)

back-end

front-end

ANTLR grammar

Parser, Lexer, Visitor MyVisitor.py model.py

myproc.flp

myproc.py

synth.py

myproc.v

rtlModel.py

emit

source file

emit

Typing (ANTLR grammar)

A simple processor as a first example

Data

memory

Program

memory
Program Counter

Instruction reg State

Instruction Set :
• NOP , HALT , JMP , JMPR, JMPZ,

JMPNZ, IJMP, IJMPR, IJMPZ, IJMPNZ,

ERR , LOAD, STORE, SETV,

• ADD, SUB, EQ, NEQ, LT, LTE, GT, GTE,

AND, NAND, OR, NOR, XOR, XNOR,

NOT
ALU

Accumulators

Source code entry

Dynamic section (Actions+Table)

Conclusion

 «Beyond Verilog» abstraction is moving towards higher level software
concepts, but hardware engineers are uncomfortable on that.

 An intermediate level of representation for digital systems is needed to allow
designers to maintain strict control over hardware fundamentals.

 A possible approach is to capture the correct hardware semantics using a
domain-specific language methodology .

 “Big opportunities for software engineers to help hardware designers in
embracing a growing complexity” (Truong, Hanrahan)

C8B2

https://langdevcon.org

Seville 17-19 October, 2024

Closing
ldesantis@micron.com

https://www.linkedin.com/in/luca-de-santis-42a87a5/

https://langdevcon.org/
mailto:ldesantis@micron.com
https://www.linkedin.com/in/luca-de-santis-42a87a5/
https://www.linkedin.com/in/luca-de-santis-42a87a5/
https://www.linkedin.com/in/luca-de-santis-42a87a5/
https://www.linkedin.com/in/luca-de-santis-42a87a5/
https://www.linkedin.com/in/luca-de-santis-42a87a5/
https://www.linkedin.com/in/luca-de-santis-42a87a5/
https://www.linkedin.com/in/luca-de-santis-42a87a5/
https://www.linkedin.com/in/luca-de-santis-42a87a5/

