Let’s make a Pact
Don’t break my API

Frank Kilcommins / SmartBear

LangDev
CON 2024

Seville 17-19 October, 2024
waroxyHands https://langdevcon.org

https://langdevcon.org/

I’'m Frank Kilcommins

» Principal API Technical Evangelist @ SmartBear

» Software Engineer and Architect (% APls & Developer Experience)
» Governance Board member on OpenAPI Initiative (OAl)

» Contributor on the Arazzo Specification

y Connect: /* insert embarrassing photo here */

afkilcommins
[]
lr‘ afrank-kilcommins

by frank.kilcommins@smartbear. com
P4 SVARTBEAR

Talk Track

waroxyHands
> APl Landscape Trends
» Designing for the future
» Is extensibility enough?

» Bi-Directional Contract Testing — An approach to calming the chaos
» Demo

» Takeaways

/* what do we want: SPRAWL! When do we want it: 2?2 */

APl Landscape Trends

» Microservices driving APl growth

In your opinion, which of these technology areas do you expect will drive the Future technologies

most API growth in the next two years?

SmartBear - State of Software Quality | API 2023 Postman - State of API Report 2023

/* what do we want: SPRAWL! When do we want it: 2?2 */

APl Landscape Trends

» Microservices driving APl growth

» Microservices are more than a fad

Consuming APls: internal integration is key

Postman - State of API Report 2023

/* what do we want: SPRAWL! When do we want it: 2?2 */

APl Landscape Trends

» Microservices driving APl growth
» Microservices are more than a fad

» Managing the sprawl will get harder

“By 2025, less than 50% of enterprise APIs
will be managed, as explosive growth in
APIls surpasses the capabilities of API
management tools.”

Gartner

Designing for Extensibility.....helps!

» A successful APl is long living and can evolve gracefully
» Bake extensibility into your design practices

PQ® SVARTBEAR

Designing for Extensibility.....helps!

» A successful APl is long living and can evolve gracefully

» Bake extensibility into your design practices

Do

Treat your microservices as APIs (and APIs as Products)
Define your extension points

Communicate robust extensibility pattern

Apply semantic versioning

Test for extensibility

Communicate

PQ® SVARTBEAR

Designing for Extensibility.....helps!

» A successful APl is long living and can evolve gracefully

» Bake extensibility into your design practices

— Do

» Treat your microservices as APIs (and APIs as Products) Don’t add required inputs

» Define your extension points Don’t remove outputs or make them optional

»y Communicate robust extensibility pattern Don’t change the type of a property

» Apply semantic versioning Don’t change property meaning by adding new property
y Test for extensibility Use Booleans sparingly

» Communicate Be inconsistent in your process

PQ® SVARTBEAR

-l 1%

Failure warning: extensibility alone is not enough

N GINEIRES

» Major version proliferation

FOREST

NEXT 5 MILES

Pitfalls remain ®
VA

» Major version proliferation
» Unbalanced testing approach

PQ® SVARTBEAR

Pitfalls remain ®

» Major version proliferation

» Unbalanced testing approach !
3 /// \\\ E
s /,/ E2E Tests \\ ‘%
X ,’_/ _______________ _\l "'E
Minutes % // \\\ Medium (o
D / Integration Tests °, &
:E /: e e e e e e e e e _.:} ‘:2
’ b -
// = \ W

Seconds / U ni t Te S t \\ Low

Speed ./ ___ __ __ __ e _____\ Confidence

The test pyramid

PQ® sSVARTBEAR

/* ToDo: address the complexity */

Pitfalls remain ®

» Major version proliferation
» Unbalanced testing approach
» Environment management (dependencies)

CI Staging Production
(TS T Tt TT T T T (TS T T Tt TTT T T (TS T TTTTT T T T T
Consumer ——— = = — — > Consumer ——— = = — — . Consumer
5 v3 '\ v2 . v
T TTommooooees T TToottoeeos [TTTTTT T o
Provider e e = . Provider e e = . Provider
v3 ' v2 v

PQ® SVARTBEAR

/* ToDo: address the complexity */

Pitfalls remain ®

» Major version proliferation
» Unbalanced testing approach
» Environment management (dependencies)

CI Staging Production
(T TSttt TTT T T T (TS TTTTTTTT T T (T TS TTTTTT T T T
Consumer ——— = = — — > Consumer ——— = = — — . Consumer
5 v3 L v2 . v1
Test Test Test
\ 4 A\ 4 A\ 4
(ST il (ST S (Tt
Provider e e = . Provider e e = . Provider
v3 ' v2 v1

PQ® SVARTBEAR

/* ToDo: address the complexity */

Pitfalls remain ®

» Major version proliferation
» Unbalanced testing approach
» Environment management (dependencies)

Production

- - -

Test

- —— -

PQ® SVARTBEAR

/* ToDo: address the complexity */

Pitfalls remain ®

» Major version proliferation
» Unbalanced testing approach
» Environment management (dependencies)

CI Staging Production

- - -

Test

- —— -

PQ® SVARTBEAR

“If you can’t deploy services
independently, you don’t have
microservices”

— Beth Skurrie

PQ® SVARTBEAR

“If you can’t deploy services
independently, you don’t have
microservices”

— Beth Skurrie

PQ® SVARTBEAR

* Tnsert viable solution */

Bi-Directional Contract Testing

Making a pact to evolve safely

PQ® SVARTBEAR

/* A new approach to contract testing */

Bi-Directional Contract Testing (BDCT)

» Schema based rather than specification by example
» Supports design-first provider workflow
» Well suited to retrofit onto existing systems

» BYO tools, tests and artifacts:

» OpenAPIl documents
» Capture contracts (e.g, Cypress, Wiremock, Mountebank)

» Contract verification (e.g., Dredd, Restassured, ReadyAPI, Postman)

» More inclusive support for wider demographic of contract testers
(e.g., Designers, QAs, SDETs, Devs)

PQ® SVARTBEAR

/* Additional Context */

What’s a Pact

Pact between
Microservice 1 vl

» Pact (noun): A formal agreement between ¢ Microservice 2 vl
individuals or parties

» Creates a contract between consumer and provider,
which is independently verifiable

il
I

» Captures interaction expectations between
software components (both explicit and implicit)

! [
[M'icr'oser‘vice:] :> [:M'icr'oser‘vice
1 ' ! 2
J = U

_———— - -

—

PQ® SVARTBEAR

/* Additional Context */

What’S d PaCt Pact.json file example

{

"consumer": { "name": “microservicel-consumer-wiremock" 1},
"provider": { "name": “microserviceZ-provider-restassured" },
» Pact (noun): A formal agreement between mteractionst
IndiVidUGIS or pal'ties "description": "GET /products f25f7b8e-35f2",
"request": {
» Creates a contract between consumer and provider, "method": "GET",
. . e . r: "path": "/products",
which is independently verifiable ey s remenp e eas type fond,
. . . "headers": { "Content-Type": "application/json" }
» Captures interaction expectations between Y
software components (both explicit and implicit) Tresponser
"status": 0
. . "headers": { "Content-Type": "application/json" 1},
) Keep assumptlons N Sync "body": { "id": "27", "name": "pizza", "type": "food" }
anc . 5 . . }
» Ability to verify consumer-provider pairs in an :
asynchronous fashion i
"metadata": {
"pactSpecification": { "version": "2.0.0" },
"client": {
"name": "optional name of the adapter",
"version": "semver compatible version of the adapter"

PQ® sSVARTBEAR

/* walk through */

BDCT — How is works

PP?VTder Provider tests
Testing Tool behaviour &

(BYO) verifies contract
V'S

API

Provider

\
Produces
'/‘. @ "Provider Contract"

PQ® SVARTBEAR

/* walk through */

BDCT — How is works

SMARTBEAR

2| PactFlow

PP?VTder Provider tests
Testing Tool behaviour &

(BYO) verifies contract
V'S

API

Provider

O

Publish Contracts

\
Produces
'/‘. @ "Provider Contract"

PQ® SVARTBEAR

/* walk through */

BDCT — How is works

SMARTBEAR

2| PactFlow
Mock Provider Provider tests
(BYO) Testing Tool behaviour &

Consumeﬁ tests (BYO0) verifies contract
behaviour 4
against mock

API

API

Provider

Consumer

&)

Publish Contracts

x|
| € = ———

\
Produces
'/‘. @ "Provider Contract"

PQ® SVARTBEAR

Produces
""consumer contract"

/* walk through */

BDCT — How is works

SMARTBEAR

2| PactFlow
Mock Provider Provider tests
(BYO) Testing Tool behaviour &

Consumeﬁ tests (BYO0) verifies contract
behaviour 4
against mock

API API

Consumer Provider

O

Publish Contracts

x|
| € = ———

\
Produces
'/‘. @ "Provider Contract"

PQ® SVARTBEAR

Produces
""consumer contract"

/* walk through */

BDCT — How is works

Mock
(BYO)

Consumer tests
behaviour
against mock

API

Consumer

SMARTBEAR

2| PactFlow

PP?VTder Provider tests
Testing Tool behaviour &

(BYO) verifies contract

@ ’

Broker checks that the
consumer Pact contract is
compatible with the OAS

from provider

API

Provider

X
| € = ———

Produces
""consumer contract"

"Contract Comparison"

]

\
e Produces
can-i-deploy '/" @ "Provider Contract"

PQ® SVARTBEAR

Consumer Consumerversion Provider Providerversion Success

Foo 1 (prod) Bar true

Foo 1 (prod) Bar true

Foo Bar true

true

can-1-deploy

DEMO ...ish

» Provider API
> Products API written in C# Y
» Using Schemathesis to test the API

» Consumer I
» Product API Consumer Client (C#/.NET core) 77777
» Consumer testing using Wiremock as mocking tool

» GitHub Actions for ClI

PQ® SVARTBEAR

@ Swagger Editor. Fikev Edit+ Inseriv Generate Server v Generaie Client v About v Try our new Editor ~

Products AP| €

A sample Products API to demonstrate Bi-Directional Contract Testing for ASC 2022

Products API

Bl R

(0]

tract Testing for

=1}

-]

trieve a list of products

Fa
Get a list of products Products
- Products .
GET /Products Retrieve a list of products N2
GET /Products/{id} Retrieve details on a specific product v
] :" (.
;'1 ‘ m /Products/{int} Delete a product from the catalog v
22 . J
23
24
25
26 Schemas LN
27
23
20 o
; Product >

trieve details on a specific product
: Get the full details on a particular product from the catalog

o

W p

h A

8 o~

LY B B BV SR RV Wy B Wy W
B

e

noan
=

Provider — Test using Schemathesis

PS C:\Wsershfrank.kilcommins\GitHub\forks\example-bi-directional -provider-dotnet> make verify swagger
sh ./example-bi-directional-provider-dotnet/scripts/verify swagger.sh

Started dotnet API with process ID: 829

Running schemathesis test to generate report

Stopping dotnet API

PS C:\Users\frank.kilcommins\GitHub\forks\example-bi-directional-provider-dotnet> []

=======s=====ss====z=====z========== SUMMARY =======z=====z====s=======s============
Pertormed checks:
not_a server error 181 / 181 passed PASSED
status code conformance 181 / 181 passed PASSED
content_type conformance 181 / 181 passed PASSED
response_headers conformance 181 / 181 passed PASSED
response_schema conformance 181 / 181 passed PASSED

P€ sVARTBEAR

Provider — Cl using GitHub Actions

Manually tri d 3 minutes ago Status Total duration Artifacts

2 frankkilcommins -o- dbSbces Success 2m 4s -

build.yml

on: workflow_dispatch

Matrix: test

® 1job completed @ can-i-deploy

Show all jobs

PactFlow — Provider contract published to broker

?7?? - pactflow-example-bi-directional-provider-dotnet

CONTRACTS

pactflow-example-bi-directional-provider-dotnet

Provider Details
PUBLISHED AT
5 minutes ago

Products AP| @

Products

/Products

/Products/{id}

|m /Products/{int}

[Fact]

0 references | Run Test | Debug Test
O n S l l l I I e r — e S public async Task GetProduct WhenCalledWithInvalidID ReturnsError()

!/ Arrange
O O var server = WireMockServer.Start();
u S I n X u n It a n String serverUrl = server.Urls[@8] + "/";
server
WithConsumer{consumer}
- -WithProvider(provider)
W I re m O C k .Given(Request.Create().UsingGet().WithPath("/Products/18")}
WithTitle("a request to retrieve a product id that does not exist")
-RespondWith{Response
.Create()
.With5tatusCode(HttpStatusCode.NotFound)
.WithHeader("Content-Type",
"application/json; charset=utf-8"));

I/ Act
var client = new ProductClient();
var ex =
await Assert
.ThrowsAsync<HttpRequestException>(() =>
client.GetProduct(serverUrl, 18, null));

/f Assert

Assert
.Equal{“Response status code does not indicate success: 484 (Not Found).™,
ex.Message);

server
.SaveStaticMappings(Path
-Combine("..", "..", "..", "wiremock-mappings"));
/f Save pact
server
.SavePact(Path.Combine("..", "..", "..", "pacts"),

"get-product-by-id-not-exist.json");

Consumer — Test generates pact.json file

{

"consumer”: {
"name": "pactflow-example-bi-directional-consumer-wiremock-dotnet™
s

"interactions": |
r

1
"providerState”: "a reguest to retrieve a product id that does not exist™,
"request”: {
"method”: "GET",
"path™: "/Products/18"
| T
"response”: {
"headers™: {
"Content-Type”: "application/json; charset=utf-8"
ks
“status": 484

|}
1.
"provider™: {

"name”: "pactflow-example-bi-directional-provider-dotnet™
¥
¥

P€ sVARTBEAR

Consumer — Another Cl using GitHub Actions

Manually trig d 2 minutes ago Status Total duration

P frankkilcommins -o- 5677488 Success 1m 20s

build.yml

on: workflow_dispatch

Matrix: Build and Test (dotnet)

© 1job completed @ can-i-deploy

Show all jobs

g £ whats New

»

OVERVIEW NETWORK DIAGRAM

MATRIX

WEBHOOKS

CONTRACTS

0000

@ A pact between pactflow-example-bi-directional-consumer-wiremock-dotnet and pactflow-example-bi-directional-provider-dotnet i C

Consumer Details

CONSUMER VERSION
5677d880a56a136dM9balesfddff1c5d4901817T

v More consumer details

RELEASED ENVIRONMENTS
N/A

TAGS

Provider Details

PROVIDER VERSION
20beB87-main+20be87

~ More provider details

RELEASED ENVIRONMENTS
N/A

TAGS
N/A

CONTRACT COMPARISON

Consumer Contract @

COMSUMER CONTRACT STATUS
Compatible

PUBLISHED AT
2 hours ago

DEPLOYED ENVIRONMENTS
Production

PUBLISHED AT
2 hours ago

DEPLOYED ENVIRONMENTS
Production

@ given a request to retrieve a product id that does not exist
@ given a request to refrieve a product with existing id

@ given a request to retrieve all products

Frank Kilcommins <frank kilcommins@smartbear.com=

CONSUMER CONTRACT

PACT SPEC VERSION
Unknown

BRANCH
&¥ main

BRANCH
& main

PROVIDER CONTRACT

Pactflow Version: 08240e2d3

Try our new Editor »~

Products AP| 2

Asample Products API to demonstrate Bi-Directional Contract Testing for ASC 2022

Potentially Breaking Change [

Product Owner:
“Please remove PELETE method,
it's for adwmin APT only”

@ Remove delete method Build #8

() Summary

Triggered via push 1 minute ago

b 2 frankkilcommins pushed -o- e20be&7 main
obs

@ test (3.1x)
build.yml

on: push

@ can-i-deploy

@ deploy
Matrix: test

@ 1job completed
Show all jobs

/Products Retrieve a list of products

/Products/{id} Retrieve details on a specific product

‘ m /Products/{int} Delete a product from the catalog

Schemas

Product »

Status Total duration Artifacts

Success Tm 32s -

@ can-i-deploy

Pactflow x C Remove delete method . frankkil. X | C Build - frankkilcommins/example X | + -
&« C 8 smartbear-frank.pactflow.io/contracts/bi-directional/provider/pactflow-example-bi-directional-provider-dotnet/version/20be87-main%2B20be&7/consumer/pactflow-example-bi-directi.. & ¥ % Ml .;". @ O L EBOEBR » 0O 3
Can | Deploy
OVERVIEW NETWORK DIAGRAM MATRIX WEBHOOKS CONTRACTS
Select team v Consumer Details
Create E e Proi CONSUMER VERSION PUBLISHED AT BRANCH
reate Example Project 5677d830a56a136di9ba0e8fddff1c5d400f8f7f 13 minutes ago main
More consumer details
Filter your pacts Q
Provider Details
PROVIDER VERSION PUBLISHED AT BRANCH
o . 20bed7-main+20bed7 2 minutes ago main

pactflow-example-bi-directional-consumer-wiremock-
dotnet = pactflow-example-bi-directional-provider- > More provider details
dotnet
Example Bi-Directional Consumer = Example Bi- ~ B
Directional Provider CONTRACT COMPARISON CONSUMER CONTRACT PROVIDER CONTRACT
Example App = Example API .

Provider Contract @ c

CONTRACT TYPE SELF-VERIFICATION TEST RESULT

OpenAP| Swagger Success (View Log)

Products ~
/Products AV
/Products/{id} N

Frank Kilcommins <frank kilcommins@smartbear.com:= Pactflow Version: 08240e2d3

/* Problem addressed: unbalanced testing strategy */

Rebalance the approach to microservices testing

» Reduced E2E tests

/ \

» Reduce integration tests 15,
. Hours // Tests \\ High \
» Reduce assumptions o e, X
. . S / Tests b ~
» Increase delivery confidence S P A ' o
. X ,’/ \\ 't
) Deploy |ndependent|y Hinuates § ,/ Contract Tests ‘0 Hedium oy
» Scale predictably o S
Unit Tests \\ oy

\
\ Confidence

The test pyramid

Vv/| Cheap /| Fast v/[Reliable V| Targeted

PQ® sSVARTBEAR

/* Problem addressed: lack of visibility into how consumers are using an API */

Benefits for APl Management Experience

» Visibility into consumers

» Reduce the need for APl major versioning

» Prevent breaking changes — reducing assumptions (drift)
» Know when it’s safe to deploy new changes

» Better conversations

» Design-first with confidence

PQ® SVARTBEAR

@ Pactflow Documentation Docs Pactflow University Examples On-Premises Notices

Getting Started with Pactflow

Ueer Interface Integration Guide

[} [
< i I Ve I t a t ry Features ? 1 Setup your APl Mock Environment (Optional)

Contract Testing
rHub feature

Pact
. . . Bi-Directional Contract The APl Auto Mocking integration creates and maintains a semi-static mock of your API
H e a to go o pa thl OW. IO/d eS I g n _fl rSt Testing based on the responses and e) fined i " OpenAPI : definition. The

Overview m

5. Also, the mock allo!
Consumer .

e the API back end is ready.

Provider

Publishing Contracts

Compatibility Che
4
Deploying and Releasing

Pravider Cantract

Supported Contracts

Tool Integration
Pubish to
_ pacttion
Overview
EACTELOW

SwaggerHub

Cypress

MSW
Wiremock (Java)
P SMARTBEAR

Wiremock (.NET)

Account 1. Create dev mock env with SWH and list up on SWH

FSOU

wproxyHands

https://go.pactflow.io/design-first

> Connect:

dafkilcommins
[]
IN afrank-kilcommins

E:@ frank.kilcommins@asmartbear.com

Q&A

Thanks
FSOU

WProxyHands

LangDev Seville 17-19 October, 2024
CON2024 https://langdevcon.org

https://langdevcon.org/

	Default Section
	Slide 1: Let’s make a Pact Don’t break my API
	Slide 2: I’m Frank Kilcommins
	Slide 3: Talk Track
	Slide 4: API Landscape Trends
	Slide 5: API Landscape Trends
	Slide 6: API Landscape Trends
	Slide 7: Designing for Extensibility…..helps!
	Slide 8: Designing for Extensibility…..helps!
	Slide 9: Designing for Extensibility…..helps!
	Slide 10
	Slide 11: Pitfalls remain 
	Slide 12: Pitfalls remain 
	Slide 13: Pitfalls remain 
	Slide 14: Pitfalls remain 
	Slide 15: Pitfalls remain 
	Slide 16: Pitfalls remain 
	Slide 17: Pitfalls remain 
	Slide 18: “If you can’t deploy services independently, you don’t have microservices” – Beth Skurrie
	Slide 19: “If you can’t deploy services independently, you don’t have microservices” – Beth Skurrie
	Slide 20: Bi-Directional Contract Testing
	Slide 21: Bi-Directional Contract Testing (BDCT)
	Slide 22: What’s a Pact
	Slide 23: What’s a Pact
	Slide 25: BDCT – How is works
	Slide 26: BDCT – How is works
	Slide 27: BDCT – How is works
	Slide 28: BDCT – How is works
	Slide 29: BDCT – How is works
	Slide 30: BDCT – How is works
	Slide 31: DEMO …ish
	Slide 32
	Slide 33: Provider – Test using Schemathesis
	Slide 34: Provider – CI using GitHub Actions
	Slide 35: PactFlow – Provider contract published to broker
	Slide 36: Consumer – Test using xunit and wiremock
	Slide 37: Consumer – Test generates pact.json file
	Slide 38: Consumer – Another CI using GitHub Actions
	Slide 39: Consumer - Pactflow
	Slide 40: Potentially Breaking Change
	Slide 41: Potentially Breaking Change
	Slide 46: Rebalance the approach to microservices testing
	Slide 47: Benefits for API Management Experience
	Slide 48: Give it a try
	Slide 49: Q&A

