
https://langdevcon.org
Seville 17-19 October, 2024

Language
Engineering for
Language Migrations
Federico Tomassetti / Strumenta

https://langdevcon.org/

Language Engineering
for Legacy Migrations

The global market for legacy modernization was
valued at $15 billion in 2022 and is expected to
grow to $24 billion by 2026 (Modlogix).

Around 80% of organizations state that outdated
technology is hindering their ability to innovate,
and 94% of executives say legacy systems severely
limit their business agility (NTT Data).

MYJW

https://modlogix.com/blog/legacy-it-infrastructure-what-it-is-and-how-to-modernize/
https://us.nttdata.com/en/news/press-release/2024/june/80-percent-of-organizations-agree

Language Engineering for
Legacy Migrations

Language Usage Typical
Codebase Age

Estimated Codebase Size

COBOL Business, finance, administrative systems (banking, insurance,
government)

1960s–1980s ~200 billion lines

RPG Manufacturing, IBM systems (AS/400, System/36) 1970s–1980s Tens of millions of lines

FORTRAN Scientific computing, engineering, simulations 1960s–1970s Hundreds of millions of lines

Visual Basic
(VB)

Enterprise desktop applications, automation (Windows) 1990s–2000s Tens of millions of lines

PL/1 Data processing, business, scientific systems (IBM) 1960s–1980s Millions of lines

Ada Real-time systems, aerospace, defense 1980s–1990s Millions of lines

CICS Transaction processing (banking, airline reservations) 1970s–1980s Millions to tens of millions of lines

Assembler Low-level programming, hardware control 1950s–1970s Millions of lines

4GLs Database queries, business reporting, ERP 1980s–1990s Tens to hundreds of millions of lines

Problems with Legacy Code

Legacy Language Talent Pool:
• COBOL: ~2 million developers globally (majority

nearing retirement)
• RPG: Developer pool is shrinking, with very few

new developers entering the field
• FORTRAN, PL/1, Assembly: Limited availability of

specialists

Modern Languages Talent Pool:
• Python: ~8 million developers globally
• Java: ~7 million developers globally
• Kotlin, JavaScript: Growing at a rapid pace

Problems with Legacy Code

Language Engineering for
Legacy Migrations

Do not blame who has Legacy Code.

Manual Rewrites: what can
possibly go wrong?

Some reports suggest that failure rates for large IT projects, such as system
rewrites, can range from 50% to 70%. This is due to factors like scope creep, lack of
familiarity with legacy code, and the complexity of accurately reproducing the
system's functionality (GenU - GenUI).

The cost of a manual rewrite is highly variable but can range from $6 to $23 per
line of code depending on the complexity and specific requirements of the
system. For large legacy systems with millions of lines of code, this can easily push
the total cost into the millions of dollars (GenU - GenUI) (RTS Labs).

Operational costs can also increase dramatically during the rewrite process,
especially if both the old and new systems need to run in parallel for some time
(YTG Services).

A manual rewrite can take years to complete. The timeline depends on the size of
the system, but for large-scale systems, it's common for rewrites to span multiple
years. During this time, the organization also faces the risk of disruption, increased
costs, and delayed project completion (YTG Services) (RTS Labs).

They fail

They cost

They take forever

https://www.genui.com/resources/modernizing-your-legacy-system
https://www.genui.com/resources/modernizing-your-legacy-system
https://rtslabs.com/legacy-system-modernization-101
https://www.ytg.io/blog/cost-of-legacy-systems
https://www.ytg.io/blog/cost-of-legacy-systems
https://rtslabs.com/legacy-system-modernization-101

Code Insight Studio Demo

Migrations’ Architecture

Legacy Code Legacy AST with
resolved symbols

Migrated AST with
resolved symbols Migrated Code

Migrations’ Architecture

d NoKeys s 1 String noKeys;

Migrations’ Architecture

C READ FILE
C DOW NOT %EOF(FILE)
C DELETE FILE
C READ FILE
C ENDDO

String sql = "DELETE FROM tableName";
Statement stmt = connection.createStatement();
stmt.executeUpdate(sql);

Migrations’ Architecture

C READ FILE
C DOW NOT %EOF(FILE)
C DELETE FILE
C READ FILE
C ENDDO

String sql = "DELETE FROM tableName";
Statement stmt = connection.createStatement();
stmt.executeUpdate(sql);

Why these two-levels
approach?

• The more we cover with patterns, the more idiomatic
it is

• The construct-to-construct is a fall-back

Customization of Migrations

• Pick the target language

• Pick the target framework

• Pick supporting libraries

• Pick code style

• Identify codebase-specific patterns

• Discuss the transformations (pattern-level and
construct-level)

The Role of LionWeb

Challenges in Legacy
Migrations

• Ensuring behavioral parity between old and new
systems

• Knowledge transfer between teams

• Removal of clones in the migration

• Removal of dead-code

• Documentation of the migrated system

Final Considerations

94% of executives say legacy systems severely
limit their business agility

This problem seems a good fit, for our mission

Better Tools
for

Better Work

https://langdevcon.org
Seville 17-19 October, 2024

Q&A
Thanks

MYJW

https://langdevcon.org/

