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Accessiblility

This presentation and its code available at:
https://github.com/dsimeinte/GenFPL-langdev2024
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https://github.com/dslmeinte/GenFPL-LangDev-2024

Caveats

1. GenFPL = “generate FPL”, not “gener{allic} FPL"
2. GenFPL is in its rfaney fetal stage

——

= il

LA
LangDev
CON2024



Quick quiz (AKA “market fit research”)

Who among us

1. Have developed a software language (DSL, etc.), and

I

2. Ended up implementing an FPL-like sub language for
(declarative) expressions, that is

3. Quite domain-aspecific — logic, arithmetic, etc.
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What is GenFPL?

= JavaScript (Node.js/NPM) tooling...
= ..to quickly implement FPL-like sub languages

« Located at: https://github.com/dsimeinte/GenFPL
(license=Apache 2.0)

= Powered by + 16 °
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https://github.com/dslmeinte/GenFPL

Why create GenFPL?

= Because there is a need for rapid, industrialized implementation of
embeddable sub FPLs — (see quiz).

= But... KernelF ?! Not everything happens in MPS. oo, g
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= Showcase and augment LionWeb. Powered by '1'%
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= To challenge some PL-“traditions”. LIONWEB

= TO scratch my FPL-itch without needing to have to deal with —

limitations/idiosyncrasies of an existing FPL. %\
= For fun! T

. ..this talk...
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Contents (not in order)

1. Demo GenFPL

a. Installation and making a configuration

I

b. Implementing and testing an interpreter

c. Accessing records
2. Some(anti-)patterns for sub FPLs

a. Typical areas and their meta-hierarchy
b. Tostdlib, or notto stdl1b?
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What is an FPL anyway?

= Funclarative! expressions language

= Governed by a substitution model|,

so admits to algebraic reasoning o
— Makes it simpler to reason about programs 1

= Quite simple to correctly implement semantics IL
and type system =
pe
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) term coined by: Markus Volter I
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putin generate

GenFPL configuration generator »
(Lionweb M1) (TS CLI in NPM) . .
def. impl. ext. impl.
interpreter (TS) interpreter (TS)

co”figu,e def. impl. type ext. impl. type
system (TS) ¢ system (TS)
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Design

= Generate parts of sub FPL from a configuration:
= Metamodel (M2)

= Extensible default implementation of interpreter -

= (Future work: type system, Freon integration, etc.) 1

= Granularity: areas ~ modules ;iD
I
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Areas of sub-FPLs

o external M2
ur'-{valueltype} (Lionweb
types languages)
A

refers to typesin

primitive types: structured/nested
bool, string, int, data types
&c. (“records”)
faults/exceptions unknowns
(as values!) (“variables”)

date + time
expressions
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functions:
defs+invocations,
closures

nil value
void&option types

comments
(as annotations)

unit tests

expression

grouping,
ternary if

“listy” types:
array[] / listx




Meta-hierarchy of an area

Type system

e D
operate on instances of
operations  F---esommosssomoossooooooos type(s) “Ur"-type type
N

/ =
“Ur"-value type <€— A
s D i alis
. are instances of i
literal(s) ~ re-mmmeeeeemeee e
N J
host language's sub language's
concept concept - -
Legenda ’/D
—

“Ur"-{typelvalue} types are specified
in the GenFPL configuration
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Meta-hierarchy of an area (cont.9)

Example: boolean area

sub language

‘@BooleanLiteral‘

‘@BooleanBinaryOperation

‘ value: Boolean

‘@BooleanNegation‘ ‘@BooleanType

‘ operator: BinaryOperators ‘

@BooleanVaIue
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sub language \
‘@Recordlnstance‘ ‘@DotExpressionL

Accessing records frame / \ R

‘@AttributeValue‘
Q

= Observation: host language often has
concepts for (nested) data structures

attribute

— e.g. “records”. | P
= Want to be able to access attribute 1
values on instances of those. g I
= Solution: configuration points to ﬁ
concepts in the host language, e |1
and generate appropriate concepts. LI
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To stdlib, ornotto stdlib?

= A stdlib adds features to a language without enlarging

the M2. Ideaq: @

(o]
""""""""""""""""""""""""""

M

= Cost: need generic concepts to be able to define the
stdlib including type system — an “inner metamodel”
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To stdlib, ornotto stdl1b? (cont.d)

= Pros: « COns:

= Fewer concepts to deal = No syntactic difference:
with (eventually) “everything’'s an <x>” v
« More malleable = worse discoverability 1
= Better abstractions and = More complex type I
generalizations system =
is
n




To stdlib, ornotto stdl1b? (cont.d)

In the context of GenFPL:

= Generation is cheap

= = Pros of stdl1ib disappear, while cons would still be “hit”

= = Design choice: no stdl1ib




Conclusions

= Interesting to do this generiativelylically}

= Generating a language means keeps complexity of it down

M

= Good input for LionWeb
= Plenty of work to do
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Future work — plans / ideas

= Integrate with Freon for a concrete syntax
= More areas

= A CLI tool

= Type system

= Nice Ul for configuration

= Generate a generator




Questions?
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Thank you!

And generate your sub-FPL today!
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