Feature Models with Dimensions in Space Missions

Pedro J. Molina

METADEV

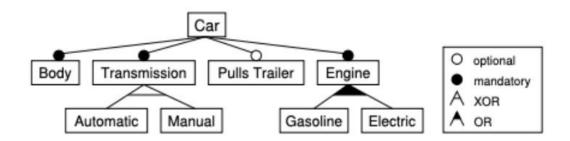
Content

65L0

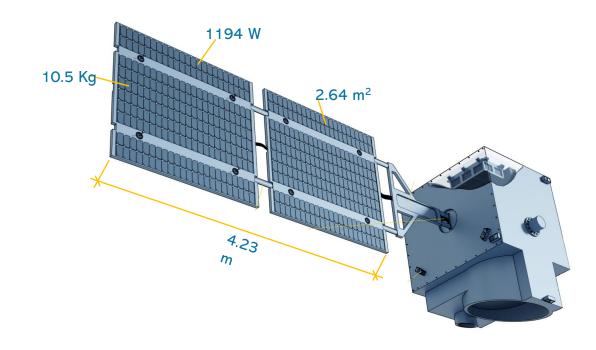
ProxyHands

- 1. Feature Models
- 2. Constrains & dimensions
- 3. Metamodeling
- 4. Design time
- 5. Configuration time
- 6. Operation time
- 7. Conclusions

Disclaimer


- This is a work in progress
- Proof of Concepts and prototype quality TRL: 3-4

Feature Models


- Describes the pieces/capabilities in a system
- The potential configuration for a family of products
- In a tree structure
- With constrains f.e. cardinality

Dimensions

- Physical systems have constraints like:
 - Cost (EUR)
 - Weight (Kg)
 - Size (m)
 - Area (m²)
 - Volume (m³/l)
 - Power Generation/Consumptions (W)
 - Thermal (K) & pressure (N) tolerances
 - etc.

Base Metamodel for Feature Models with Dimensions

Essential Notation

```
AggregationSemantic
            Property
            Definition
System
                              Feature
              Property
               Value
           Constraint
                                     Cardinality
```

```
class System {
    string Name;
    string Description;
    List<Feature> Features;
    List<PropertyDefinition> Properties;
    List<Constraint> Constraints;
class Feature {
    string Name;
    string Description;
    Cardinality Cardinality;
    int? minimum;
    int? maximum;
    Cardinality ItemsCardinality;
    int? itemsMinimum;
    int? itemsMaximum;
    List<Feature> Features;
    List<PropertyValue> Values;
```

Aggregation Semantic

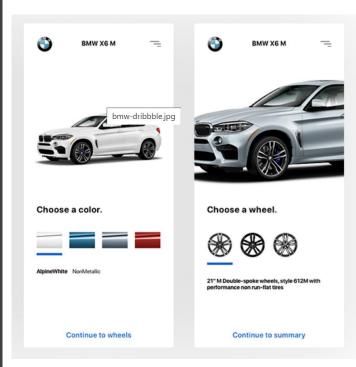
Sum / Aggregate

e.g.: Cost, Weight

Maximum Height of pieces passing under a bridge e.g.:

Minimum e.g.: Max. Thermal tolerance of a set of components

Count


e.g.:

Count of redundant systems for High-Availability.

Example. Car Configuration

Car Model-W Base:		1500	Kg
mandatory Version XOR Elegance optional Air Condition optional Seat Heaters optional Top Rack optional Caravan Hitch mandatory Wheels	40.000 EUR 2000 EUR 500 EUR 1500 EUR 1000 EUR	2 1 0.5 0.2	Kg Kg Kg Kg
mandatory 17'' XOR Sport mandatory Air Condition optional Seat Heaters optional Top Rack optional Caravan Hitch mandatory Wheels XOR 17''	50.000 EUR 500 EUR 1500 EUR 1000 EUR		Kg Kg
XOR 19'' mandatory Engine XOR Gasoline XOR Diesel	500 EUR 0 EUR 3000 EUR	200	Kg Kg Kg

Example. Residential Solar Generation

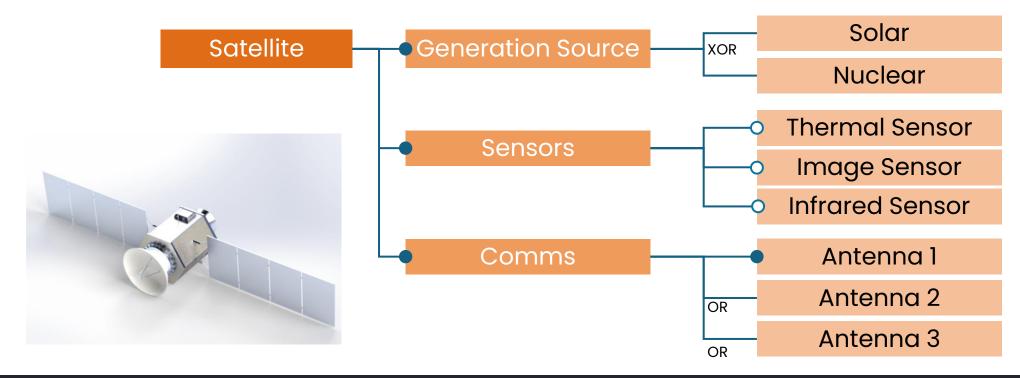
```
Residential Photovoltaic Installation
                                                      Base 4000 EUR
 mandatory Installation
 mandatory Inverter
  XOR Model A
                                      Generation 4000 kWh 2300 EUR
  XOR Model B
                                      Generation 5000 kWh 2500 EUR
                                      Generation 6000 kWh 2900 EUR
  XOR Model C
 mandatory Generation Units (1..20)
  XOR Panel-A1 Generation 400 W Size 200 x 100 x 5 cm
                                                           300 EUR
   XOR Panel-A2 Generation 450 W Size 210 x 100 x 5 cm 350 EUR
  XOR Panel-A3 Generation 550 W Size 220 x 100 x 5 cm
                                                           400 EUR
 optional Batteries (0..20)
 optional Battery-M1 Capacity: 5 kWp
 optional Battery-M2 Capacity: 10 kWp
 optional Battery-M3 Capacity: 15 kWp
 optional Extended Warranty
   XOR 5 years
                                                          2000 EUR
   XOR 10 years
                                                          3000 FUR
constraint: Inverter.Capacity >= sum(panel.Capacity)
```


Example. PLD/Miura 5 Configuration

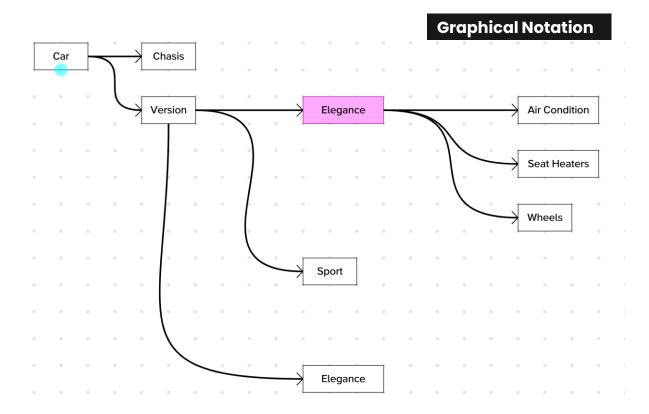
```
Rocket Miura-5 Height: 35.7 m Max Weight: 69.025 Kg
mandatory Phase-1 Height: 26.3 m
mandatory Engine TEPREL-C (5..5)
                                                 190 kN
 mandatory Tank1 Propelent: LOX
mandatory Tank2 Propelent: Biokerosene
mandatory Phase-2 Height: 12.1 m
 mandatory Engine
                                     50 kN
 mandatory Payload
    XOR Payload-Config-1 1 L Satellite
    XOR Payload-Config-2 2 S Satellites
    XOR Payload-Config-3 1 L Satellite,
        1..4 XS Satellites
Constraint: Payload max. 450 kg
```


Feature Models in Space Missions

- Central asset to assemble subsystems into bigger systems
- Allow reuse of subsystems from previous missions (already tested)
- Reuse knowledge & assets
- Controlled risks on selected new subsystems
- Can upgrade as the technology evolves: new materials/technologies


Phases & Use Cases

- 1. Feature Modeling-Time
- 2. Mission Design-Time
- 3. Operation-Time


Phase 1. Feature Modeling-Time

- Design the family of products, constrains and operational limits.
- Define variants and limit options.

Phase 1. Feature Modeling-Time

Features

Projectional Notation

EATURE								
Name:		Chasis						
Description:		Base Chasis						
Cardinality:		Mandatory ~						
PROPERTY VALU		Y VALUE						
Name:		Weight						
	Value:		1500					
EATURE								
lame:		Version						
escrip		Version						
ardin		XOR	~					
	FEATURE							
	Name:		Elegance					
	Descrip			Version Elegance				
	Cardin		Optiona	I •				
		FEATURE						
		Name:		Air Cond				
		Descrip		Air Cond				
		Cardin		Optiona	1 💙			
		PROPERTY	Y VALUE					
			Name:		Weight			
			Value:		2			
		PROPERTY	Y VALUE					
			Name:		Price			
			Value:		2000			
		FEATURE			.			
		Name:		Seat Heaters				
Descrip			Seat Hea					
		Cardin						
		PROPERTY VALUE Name: Price		Potes				
				Price				
		Value:		500				
		PROPERTY VALUE						
		Name:		Weight				
			Value:		1			
FEATURE								

Phase 2. Mission Design-Time

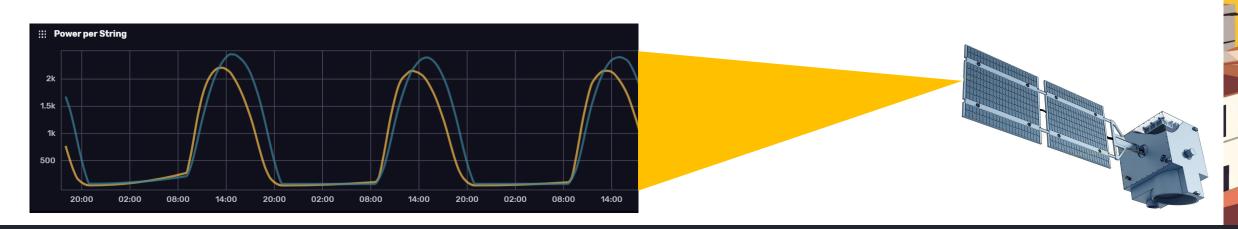
- Instantiates a concrete exemplar of the FM for a selected mission
- Check constrains, trace to requirements

Questions:

Are all the required sensors on board? Is the payload weight valid? What color would you like for your car?

Phase 2. Mission Design-Time

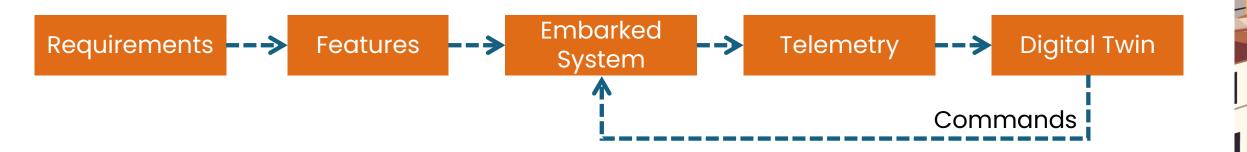
FEATURE	SELECT	WEIGHT (KG)	PRICE (EUR)	DESCRIPTION
Chasis	selected	1500	-	Base Chasis
Version	XOR	-	-	Version
- Elegance	selected	-	30000	Version Elegance
Air Condition	selected	2	2000	Air Condition
Seat Heaters	□ select	1	500	Seat Heaters
+ Wheels	selected	-	-	Wheels
Sport	□ select	-	40000	
Advance	□ select	-	50000	
Total:		1,502	32,000	



Phase 3. Operation-Time

■ Tracks system and subsystem with abundant telemetry for data analytics & operations → Ground Control Systems, Digital Twins

Questions:


Are the solar panels producing energy as expected?

Conclusions

- Feature Modeling are applicable for many domains
- FM are a must for Space Missions (a long tradition)
- Better tools (UX) for FM are possible
- Better traceability from reqs. to operations (Digital Twins)

Conclusions

- Same concepts, same language, better understanding.
- Reuse of subsystems already tested from previous Mission.
- Extensible to incorporate new technologies/artifacts when they are available.

65L0

Thanks! Q&A

Try them at:

https://fm.metadev.pro

https://essential.metadev.pro

Seville 17-19 October, 2024

https://langdevcon.org