
The Chisel Method for 
building parsers



Let’s start with an experiment



I guess you are thinking

• Parsers? What a boring topic. Parsing is a solved problem! 

• I learned what I needed to learn about parsing 10 or 20 or 30 
years ago at the university



Like flying!



Flying: same but different



What is wrong with building parsers?

• It is perceived by many as a black magic art 

• Clients have not a clear idea of what a parser does 

• It is a trial and error process 

• It takes a lot of time to train people 

• There are repetitive tasks involved 

• Parsers are not easy to integrate



What can we do?



The Chisel Method



The Chisel Method - Goal setting



Start with the end in mind



Quality checks

1. We can produce an AST for each single valid example. 

This ensures we can parse. 

2. Each Concept is validated by at least one blessed example. 

This ensures that the model of the code produced is valuable. 



Quality checks



Quality checks



The Chisel Method - Workflow



Workflow Demo



Show all checks are green



Where are we?



Where are we?

• Setup is now automated, so it does not take time 

• Time is spent in the Parse Phase and the AST Refinement Phase 

• We know by experience that the Parse phase takes 70% of the 

time 

• We know that the progress is not linear, i.e., the last bits are the 

most difficult



Where are we?

Examples covered Progress
250 9 %
500 25 %
750 45 %
1,000 70 %

Parse Phase (0-70%) - 1,000 examples to cover

Constructs Progress
25 74 %
50 81 %
75 89 %
100 100 %

AST Refinement Phase (70-100%) - 100 constructs to cover



The Chisel Method - Adoption



Language Engineering Pipelines



Language Engineering Pipelines



Providing APIs

All of our parsers are based on the StarLasu libraries: 

• Kolasu for Kotlin 

• Pylasu for Python 

• Tylasu for Typescript 

• SharpLasu for C# 

All those libraries provide APIs to navigate and process the AST



Generating adapters



Compatibility to the next level



Documentation



Teachability

Teachability reduce risks: 

• the vendor providing the parser will be able to train new 
maintainers, if needed 

• the client can take over maintenance of the parser, if 
needed 

• complementary parsers, based on the same structure, can 
be developed (think of an HTML, JS, and CSS parsers that 
are compatible)



What are the deliverables

• A written method: currently described into 20 pages, later on it will 
become a video-course 

• Supporting libraries: the ones necessarily at runtime are the StarLasu 
libraries, and they are open-source 

• Tools: a gradle plugin and an IDEA plugin, that at the moment we use 
internally and we are refining. They just accelerate development



Why calling it the Chisel method?

Because it is about getting the 
information out of the code, as you use 
a chisel to take the statue out of the 
marble. 

Also, Strumenta means tools in Latin, 
and Chisel is one tool.



What next?

• Refine this for the next 10 years 

• …while working on the method for building Transpilers 
(hopefully in time for next year LangDev!)



Thank you!

Feedback at: 

federico@strumenta.com 

mailto:federico@strumenta.com
mailto:federico@strumenta.com

