
Luca De Santis

LangDev 2022

Introduction
Setting a scenario :

 Integrated circuits with embedded control of physical quantities

 Control algorithms are complex

 Many hard constraints

 Cost/Area

 Speed

 Low Power

 Time-to-market

Metric Requirements Best Choice

Very Small Silicon Foortprint
Every instruction has a cost in terms

of area
Processor

Tight Real Time Control

Every instruction has a time cost

Accurate timing control of Physical

Processes

Dedicated HW

Very aggressive Time to market
Reuse, Robustness, Bug-free silicon

delivery, Verification cost

Processor

(decoupling HW verification from SW

verification)

Ultra Low Power Every instruction has a power cost Dedicated HW

In this context we generally think to the «processor» not as a «component», but as a «design

methodology» , aiming to minimization of silicon area and maximization of reuse and

robustness, paying in performances and power.

Constraints

The fundamental questions

 Why is there a need for custom processors ?
 Control algorithms are enough complex so that Finite State Machine based design isn’t viable

 Commercial processors are redundant and area consuming, instruction set must be tailored on

the control algorithms

 Why is there a need for custom languages and compilers for

custom processors ?
 Control algorithms are enough complex so that assembly programming isn’t viable

 Commercial compilers are redundant

 Optimization must be done on the full software/hardware stack

Topics

 Architecture-Aware Programming

 Instruction replacement

 Compiler-in-the-loop concept

 Other specific topics

Today Digital Architectures are something like:

Controlled Systems

uProc 1 uProc 2

uProc 3

HW 1

HW 2 HW 3

Control System

• Classical heap/stack model common to many programming languages doesn’t fit

• Memories have different sizes/bit-width

• Communication overhead can’t be tolerated

Programmer must know about architecture to write efficient code

Compiler must know about architecture to emit efficient bit-code

A set of communicating and specialized processors plus a set of dedicated HW and memories

Mem 2
Mem 1

Programmer’s point of view

Software

Development

Suite

• Many specialized instructions

• Different Peripherals (HW blocks or I/O protocols)

• Timing Metrics and Constraints

• Code size efficiency (execution time vs. total code amount)

• Abstract representation of architecture (address boundaries, data types, data movements)

• No OS support (peripheral management is quite complex)

Abstraction has a value but every abstraction has a cost

Customization makes abstraction efficient

«Efficient customized abstraction» has a higher value

Compiler

fill binary code on processors

one development environment

Typing

Type system is simple but there is a problem: to minimize area and improve

timing, data are stored in memories with different size and access policies

Compiler must check legality of data movement

Open problem: optimal allocation of storage resources

Storage media size access IR RAM1 RAM2 PROM Act

Internal registers 16 RD/WR yes yes yes no yes

RAM1 8 RD/WR yes no no no yes

RAM2 12 RD/WR yes no no no no

PROM 10 Read yes no no no no

Action registers 8 Write no no no no no

def x as reg16

def y as ram8

set x[15:8] = y
Data movement constraints

A complex feature: Instruction replacement

Problem :

 Software is hard-coded on silicon

 After debug some instructions must be fixed

Solution: part of the code is in a volatile area filled at system’s power-up

Problem for the compiler : guarantee registers coherence

 In other words the Procedure DAG can change, but most part of information are

hard-coded, so the new code must be compiled so that it doesn’t break previous

register allocation strategy

hard

microcode

bad instr

Instruction

substitution

logic

soft

microcode

Execution flow is transferred to SOFT

area after matching instruction address

Address spaces are contiguous, code

on SOFT area can jump back to HARD

area

Continous check on PC

main

P2 P3

P4 P5

P6’

When allocating register for Q1,

allocator must take care of existing

allocations on HARD micro-code

In this example, compiler must duplicate

P6 if P2 and P6 share registers
Q1

P6

Registers coherence after fix

Examples
…

set x = 0 ;

replace(set x = 3);

…

Single row replacement

…

call P1 ;

replace(call P2);

…

Procedure call replacement

Adding instructions

…

set x = 0 ;

replace(

set y = 0 ;

call P1 ;

set x = 0 ;

)

…

Jump to SOFT area

Jump back to HARD area

Compiler-in-the-loop concept

Problem:

 Let’s suppose we want to improve a digital architecture
(HW+SW) in terms of area/power/speed metrics

 We want to reuse SW as much as possible

 Any change in the architecture/instruction-set means to
change the compiler and the program

 This is time-consuming and bug risky

Application

Program

Compiler

Machine Code

Instruction Set

Micro-

Architecture

Digital Design Stack

Compiler-in-the-loop

Possible solutions:

 Virtual machine – too slow for some applications

 Intermediate language – sub-optimal because compiling to IL

makes us lose some useful information for real-time control

 Parametric/Generic compiler, so that compiler is in the trial

loop (something like LLVM as in Synopsys ASIP Designer)

Open problem: full stack optimization with timing info

Possible path: graph rewriting techniques, need of a language for

common description of HW and SW.

Real-time control = physical process control

 Physical process control gives an interesting opportunity: use delay time to
«hide» computations and other processing specific stuffs

 This makes programmer comfortable to write «relaxed» code

 But specifics for that changes over time

 Suddenly, that code becomes dramatically fatal, because violates RT
constraints

 No automatic management of this issue today: research opportunity ? Real-
time-aware compiler ? Tagging code with timing info ?

real-time delay

physical process

Dealing without a stack

main

P2
P3

P4 P5 P6

Traverse Procedure Dag

Each Procedure P has a register allocated for

return address, no local variables, no

parameters passing

No recursion (direct or indirect) allowed

Traverse DAG, allocating one register for return

address to each procedure.

Before allocating a register, analyzer has to

traverse hierarchy.

When going back to father, free registers

Consistency condition : In any path from root to

leaves, each register must be allocated only

once

In the example, when allocating a register for

P3, we have to check previous allocation for

P5, possibly used when traversing P2

Dealing with only a stack for return addresses

main

P2
P3

P4
P5 P6

Return addresses are managed automatically by HW

As in the previous example, each procedure P has some registers

allocated for parameters passing and return value.

No recursion (direct or indirect) allowed

Return value is a register allocated on the caller.

The callee access it by Pname.varname

Procedures like P5 must use global variables

Problem: fast saturation of registers

A new type of local variable : programmer can use it only before a new

procedure call; in other words existence of variable is not guaranteed

along the procedure call chains.
proc P3

int retval1

call P6

…

proc P6

P3.retval1 = 5

return

Simple but complicated type system and arithmetics

 No necessity of data structures

 Sometimes you have «hardware» pointers

 Signed + unsigned without cast

 Single bit operations/checks (more than C-like bitwise operations)

 Bit range selection X[6:4], right shift and left shift in the same clock cycle

 Saturation arithmetic, sometimes not aligned with word width

 Multiplication without a multiplier : x * 3 = x << 1 + x

Procedure call policies

 Call procedures on different processors

 Queued Calls

 «Inline» on the call

 Embedded return

…

call P

…

inline call P

…

…

call P1

call P2

call P3

…

wait end

…

set x = y

return

Opportunistically compiled as one instruction

fast vs. area-efficient code

Looking at the future…

 ASIC development has gone into integration of Verilog/VHDL IP blocks:

«wild wiring» approach, huge cost of verification

 Verilog/VHDL abstraction is going into adopting high-level programming

concepts (OO, FP..) but hardware designers are not so comfortable on

those stuffs

 High-level synthesis is having a renewed boost in data-intensive

applications on FPGA (hardware acceleration of mathematical algorithms):

not well suited for control-intensive applications

 HW/SW co-design is focused on optimal partitioning of HW and SW tasks,

but in this context processor architecture is an input data

 Processor synthesis is focused on instruction-set micro-details, not in the

overall optimization, and it’is monopolized by Synopsys

 Compiler technology is going to multi-level optimization (MLIR), not well

suited for highly constrained HW design

Dreaming…
A programming language for control algorithms that allows the

definition of:

 Hardware boundaries and constraints

 Real-time constraints

 Power constraints

and a compiler that suggests the optimal architecture.

A bigger dream is that …

the compiler synthesize the optimal architecture.

https://www.linkedin.com/in/luca-de-santis-42a87a5/

ldesantis@ymail.com

https://www.linkedin.com/in/luca-de-santis-42a87a5/

