
Seamless Generator Composition for Heterogeneous
Modeling Languages

Nico Jansen

Software Engineering

RWTH Aachen

http://www.se-rwth.de/

MontiCore – An Overview

Nico Jansen | Software Engineering | RWTH Aachen3

• MontiCore is a language workbench (LWB) allowing to design DSL-tools.

• Common uses of DSL-tools:
 generating code

 generating tests

 error detection, model and code analysis, metrics

 synthesis, transformation

• History
 Developed since 2004

 Why? In 2004, the available tools were very poor in their

functionalities and not extensible

 Now: Flexible LWB for compositional language development

Language Workbench MontiCore

Grammar Language

Lexer/Parser
Generator

Visitor Generator

Context-Conditions
Generator

Symbol Table
Generator

Nico Jansen | Software Engineering | RWTH Aachen4

Use of Models for Coding and Testing

Language & tooling workbench

MontiCore

MontiCore Goals

• Definition of modular language components

• Interfaces between models/language components

 Name spaces, typing (~ Java, UML)

 Symbol „kinds“ + signatures

• Assistance for analysis and synthesis

• Assistance for transformations

• Pretty printing, editors (graphical + textual)

• Composition of languages:

 independent language development

 composition of languages and tools

 language extension, aggregation

 language inheritance (allows replacement)

• Quick definition of domain specific languages (DSLs)

 by reusing existing languages

 variability in syntax, context conditions, generation,

semantics

Nico Jansen | Software Engineering | RWTH Aachen5

• MontiCore provides a set of language components that can be used as features
 Some dependencies exist, e.g. certain expressions rely on appropriate literals

• An excerpt of language variability mechanisms in MontiCore:

Feature Diagram for MontiCore Language Components

Legend:

optional feature
Grammars for these languages can be found at: https://monticore.github.io/monticore/monticore-grammar/src/main/grammars/de/monticore/Grammars/

MCLiterals

Basis

MCCommon

Literals

MCJava

Literals

Expression

Basis

Assignment

Exp.
Common

Exp.
SetExp.

JavaClass

Exp.

BitExp.

Basic

Symbols

OO

Symbols

MCBasic

Types

MCCollection

Types

MCSimple

GenericTypes

MCFull

GenericTypes

MCArray

Types

2676 Variants possible

FD

https://monticore.github.io/monticore/monticore-grammar/src/main/grammars/de/monticore/Grammars/

Nico Jansen | Software Engineering | RWTH Aachen6

MontiCore Language Zoo: Development in three Waves

• Language library built in three phases

Wave 1:

Components

Wave 2:

“Known”

Languages

Wave 3:

Full & New

Languages

Legend: Many of these languages are defined using several grammars, CoCo-sets, etc.

Expressions

LiteralsMCCommon Types

MCBasics Statements Cardinality

Completeness

JavaLight XML

Java JSON

SysML

Statecharts
SI Units

Sequence D.Class D.

Object D.

OCL

MontiGem

Feature D.

UML

Activity D. / BPMN

CAD/M

???

???
MontiArc

MontiCore – Compositional
Language Design

Nico Jansen | Software Engineering | RWTH Aachen8

• Automaton language L1:

Language Extension

• Lets start with one language L1

• The automaton has
 2 states and

 2 transitions

 describing a ping pong game

automaton PingPong {

state Ping, Pong;

Ping -> Pong

Pong -> Ping

}

L1

SC

Nico Jansen | Software Engineering | RWTH Aachen9

• Automaton language L1 is extended by actions in L2:
 Actions are embedded at multiple places:

Language Extension

• L2 extends L1
 by new language concepts

• One model contains language concepts of both

languages

• Either L1 or L2 becomes the master language and

the other the multiply embedded sub-language

• Semantics, code generation is often defined together,

but ideally reuse L1-semantics, generators, etc.

should be possible

automaton PingPong {

state Ping, Pong;

Ping -> Pong [strokes++]

Pong -> Ping [strokes++]

}

extends

L2

L1

SC

Nico Jansen | Software Engineering | RWTH Aachen10

• Automaton language L1 and action language L2 are

combined to a language embedding the actions into

the automaton:

• “Glue” can be added, e.g. the square brackets

automaton PingPong {

state Ping, Pong;

Ping -> Pong [strokes++]

Pong -> Ping [strokes++]

}

Language Embedding

• A new language L3 embeds

model concepts from L2 in

the language L1

• Models have parts conforming to sublanguages

• Languages L1 and L2 were independently developed

• Enables reuse and extension of languages

• Allows to define language components
 E.g. expressions, literals, type definitions.

embeds

L3

L1 L2

SC

extends

Nico Jansen | Software Engineering | RWTH Aachen11

• Two models:
 An automaton and a java class sharing symbols (e.g.
strokes)

Language Aggregation

• An aggregated language

L3 combines L1, L2, and more …

• Models are independent artifacts
 they can be edited, reused, etc. individually

• Models are only semantically composed
 there is no model belonging “only” to L3

• Models syntactically refer to each other
 “Symbols” are imported / exported

aggregates

L3

L1 L2

SC

CD
class Game {

Player a, b;

int strokes = 0;

}

automaton PingPong {

state Ping, Pong;

Ping -> Pong [strokes++];

}

Nico Jansen | Software Engineering | RWTH Aachen12

• Symbol usages are often realized as names or expressions
 Qualification often contained in import statements

Cross-Referencing & Symbol Resolution

strokes?

play.Game.strokes?

GS

AS AS

resolve strokes

bottom-up

resolution

top-down

resolution

Sc

pkg.Game.strokes

strokes?

SC

CD
package pkg;

class Game {

Player a, b;

int strokes = 0;

}

import pkg.Game.*;

automaton PingPong {

state Ping, Pong;

Ping -> Pong [strokes++];

}

strokes?

Sc

Sc

strokes

Nico Jansen | Software Engineering | RWTH Aachen13

Serialization with Intermediate Representation

Character

Sequence
Intermediate

Representation

Object

Structure

Visitor

Builder Parser

Printer

Serialization

Deserialization

• Serialization: Translating object structure into character sequence

• Deserialization: Translating character sequence into object structure

• Character sequence is encoded in an encoding format (e.g., JSON, OD, but also binary formats)

• Efficient (de)serialization has to be aware of types that object structures conform to

• The serialization strategy describes how to translate between objects of a type and encoding format

• Transformation into an intermediate structure enables separating type-specific parts from type-agnostic parts

 type-specific parts can be generated

 relieves usage of reflection

MontiCore – Generator Composition
for Aggregated Languages

Nico Jansen | Software Engineering | RWTH Aachen15

• Challenge: Integrating Generated Artifacts of heterogeneous generators (mostly of different languages)

Seamlessly Composing Generated Artifacts

CDPerson

String name

int age
child adult

p.age >= 18

Java
public class Person {

protected String name;

protected int age;

public int getAge() {

return age;

}

// ...

}

Aut

Java
// ...

Person p = new Person();

if (p.getAge() >= 18) {

setState(adult);

}

// ..

«gen» «gen»

Nico Jansen | Software Engineering | RWTH Aachen16

• Challenge: Integrating Generated Artifacts of heterogeneous generators (mostly of different languages)

Seamlessly Composing Generated Artifacts

CDPerson

String name

int age

p.age >= 18

Java
public class Register {

static Map<Person,Integer> reg;

public static int searchReg(Person p){

return reg.get(p);

}

// ...

}

Aut

Java
// ...

Person p = new Person();

if (Register.searchReg(p) >= 18) {

setState(adult);

}

// ..

«gen» «gen»

child adult

Nico Jansen | Software Engineering | RWTH Aachen17

• Each symbol gets one (possibly more) templates that carries the corresponding accessor code

• When translating expressions in Freemarker templates, resolve for symbol and extract accessor

Composing Generators via Symbol Table

CD

Person

String name

int age

:TypeSymbol

name =“Person”

template = …

:FieldSymbol

name =“age”

template = …

:FieldSymbol

name =“name”

template = …

scopes omitted .ftl

${tc.signature(“sym”,“context”)}

${context}.get${sym.getName()}()

${tc.signature(“sym”,“context”)}

Register.searchReg(${context})

.ftl

Nico Jansen | Software Engineering | RWTH Aachen18

• Challenge: Integrating Generated Artifacts of heterogeneous generators (mostly of different languages)

Seamlessly Composing Generated Artifacts – Generator View

CDPerson

String name

int age

p.age >= 18

Aut

// ...

${tc.genType(type)} p = ${tc.inst(type)};

if (${tc.acc(expr)}) {

setState(adult);

}

// ..

:FieldSymbol

name =“age”

template = …

${tc.signature(“sym”,“context”)}

${context}).get${sym.getName()}()

.ftl

.ftl

child adult

Vielen Dank
für Ihre Aufmerksamkeit

Thank you

for your attention

