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MontiCore – An Overview
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• MontiCore is a language workbench (LWB) allowing to design DSL-tools.

• Common uses of DSL-tools:
 generating code 

 generating tests

 error detection, model and code analysis, metrics

 synthesis, transformation

• History
 Developed since 2004

 Why? In 2004, the available tools were very poor in their 

functionalities and not extensible

 Now: Flexible LWB for compositional language development

Language Workbench MontiCore 

Grammar Language

Lexer/Parser 
Generator

Visitor Generator

Context-Conditions
Generator

Symbol Table 
Generator 
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Use of Models for Coding and Testing

Language & tooling workbench 

MontiCore

MontiCore Goals

• Definition of modular language components

• Interfaces between models/language components

 Name spaces, typing (~ Java, UML)

 Symbol „kinds“ + signatures

• Assistance for analysis and synthesis

• Assistance for transformations

• Pretty printing, editors (graphical + textual)

• Composition of languages:

 independent language development

 composition of languages and tools 

 language extension, aggregation 

 language inheritance (allows replacement)

• Quick definition of domain specific languages (DSLs)

 by reusing existing languages

 variability in syntax, context conditions, generation, 

semantics
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• MontiCore provides a set of language components that can be used as features
 Some dependencies exist, e.g. certain expressions rely on appropriate literals

• An excerpt of language variability mechanisms in MontiCore:

Feature Diagram for MontiCore Language Components

Legend:

optional feature
Grammars for these languages can be found at: https://monticore.github.io/monticore/monticore-grammar/src/main/grammars/de/monticore/Grammars/
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MontiCore Language Zoo: Development in three Waves

• Language library built in three phases

Wave 1:

Components

Wave 2:

“Known”

Languages

Wave 3:

Full & New

Languages

Legend: Many of these languages are defined using several grammars, CoCo-sets, etc.
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MontiCore – Compositional 
Language Design
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• Automaton language L1:

Language Extension

• Lets start with one language  L1  

• The automaton has 
 2 states and 

 2 transitions 

 describing a ping pong game

automaton PingPong {

state Ping, Pong;

Ping -> Pong

Pong -> Ping

}

L1

SC
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• Automaton language L1 is extended by actions in L2:
 Actions are embedded at multiple places:

Language Extension

• L2 extends L1  
 by new language concepts

• One model contains language concepts of both 

languages

• Either L1 or L2 becomes the master language and 

the other the multiply embedded sub-language

• Semantics, code generation is often defined together, 

but ideally reuse L1-semantics, generators, etc. 

should be possible

automaton PingPong {

state Ping, Pong;

Ping -> Pong [ strokes++ ] 

Pong -> Ping [ strokes++ ] 

}

extends

L2

L1

SC
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• Automaton language L1 and action language L2 are 

combined to a language embedding the actions into 

the automaton:

• “Glue” can be added, e.g. the square brackets

automaton PingPong {

state Ping, Pong;

Ping -> Pong [ strokes++ ] 

Pong -> Ping [ strokes++ ] 

}

Language Embedding

• A new language L3 embeds

model concepts from L2 in

the language L1

• Models have parts conforming to sublanguages

• Languages L1 and L2 were independently developed 

• Enables reuse and extension of languages

• Allows to define language components
 E.g. expressions, literals, type definitions.

embeds

L3

L1 L2

SC

extends
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• Two models:
 An automaton and a java class sharing symbols (e.g. 
strokes)

Language Aggregation

• An aggregated language  

L3 combines L1, L2, and more …  

• Models are independent artifacts
 they can be edited, reused, etc. individually

• Models are only semantically composed 
 there is no model belonging “only” to L3

• Models syntactically refer to each other 
 “Symbols” are imported / exported

aggregates

L3

L1 L2

SC

CD
class Game {

Player a, b; 

int strokes = 0;

}

automaton PingPong {

state Ping, Pong;

Ping -> Pong [ strokes++ ];

}
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• Symbol usages are often realized as names or expressions
 Qualification often contained in import statements

Cross-Referencing & Symbol Resolution

strokes?

play.Game.strokes?

GS

AS AS

resolve strokes

bottom-up

resolution

top-down

resolution

Sc

pkg.Game.strokes

strokes?

SC

CD
package pkg;

class Game {

Player a, b; 

int strokes = 0;

}

import pkg.Game.*;

automaton PingPong {

state Ping, Pong;

Ping -> Pong [ strokes++ ];

}

strokes?

Sc

Sc

strokes
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Serialization with Intermediate Representation

Character

Sequence
Intermediate

Representation

Object

Structure

Visitor

Builder Parser

Printer

Serialization

Deserialization

• Serialization: Translating object structure into character sequence

• Deserialization: Translating character sequence into object structure

• Character sequence is encoded in an encoding format (e.g., JSON, OD, but also binary formats)

• Efficient (de)serialization has to be aware of types that object structures conform to

• The serialization strategy describes how to translate between objects of a type and encoding format

• Transformation into an intermediate structure enables separating type-specific parts from type-agnostic parts

 type-specific parts can be generated

 relieves usage of reflection



MontiCore – Generator Composition
for Aggregated Languages
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• Challenge: Integrating Generated Artifacts of heterogeneous generators (mostly of different languages)

Seamlessly Composing Generated Artifacts

CDPerson

String name

int age
child adult

p.age >= 18

Java
public class Person {

protected String name;

protected int age;

public int getAge() {

return age;

}

// ...

}

Aut

Java
// ...

Person p = new Person();

if (p.getAge() >= 18) {

setState(adult);

}

// ..

«gen» «gen»
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• Challenge: Integrating Generated Artifacts of heterogeneous generators (mostly of different languages)

Seamlessly Composing Generated Artifacts

CDPerson

String name

int age

p.age >= 18

Java
public class Register {

static Map<Person,Integer> reg;

public static int searchReg(Person p){

return reg.get(p);

}

// ...

}

Aut

Java
// ...

Person p = new Person();

if (Register.searchReg(p) >= 18) {

setState(adult);

}

// ..

«gen» «gen»

child adult
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• Each symbol gets one (possibly more) templates that carries the corresponding accessor code

• When translating expressions in Freemarker templates, resolve for symbol and extract accessor

Composing Generators via Symbol Table

CD

Person

String name

int age

:TypeSymbol

name =“Person”

template = …

:FieldSymbol

name =“age”

template = …

:FieldSymbol

name =“name”

template = …

scopes omitted .ftl

${tc.signature(“sym”,“context”)}

${context}.get${sym.getName()}()

${tc.signature(“sym”,“context”)}

Register.searchReg(${context})

.ftl
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• Challenge: Integrating Generated Artifacts of heterogeneous generators (mostly of different languages)

Seamlessly Composing Generated Artifacts – Generator View

CDPerson

String name

int age

p.age >= 18

Aut

// ...

${tc.genType(type)} p = ${tc.inst(type)};

if (${tc.acc(expr)}) {

setState(adult);

}

// ..

:FieldSymbol

name =“age”

template = …

${tc.signature(“sym”,“context”)}

${context}).get${sym.getName()}()

.ftl

.ftl

child adult
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