Seamless Generator Composition for Heterogeneous
Modeling Languages

Nico Jansen
Software Engineering
RWTH Aachen

http://www.se-rwth.de/

MontiCore — An Overview

SE Enohening UNl\I}é\F?g%IY\'

Language Workbench MontiCore

« MontiCore is a language workbench (LWB) allowing to design DSL-tools.

« Common uses of DSL-tools:
— generating code
— generating tests
— error detection, model and code analysis, metrics
— synthesis, transformation

 History
— Developed since 2004
— Why? In 2004, the available tools were very poor in their
functionalities and not extensible
— Now: Flexible LWB for compositional language development

Grammar Language

Lexer/Parser
Generator

Visitor Generator

| Context-Conditions

Generator

Symbol Table
Generator

3 Nico Jansen | Software Engineering | RWTH Aachen

Engineering

RWTH

MontiCore Goals

SOFTWARE

ARCHITECTURE \ GENERATIVE /

Language & tooling workbench
MontiCore

 Definition of modular language components

* Interfaces between models/language components
— Name spaces, typing (~ Java, UML)
— Symbol ,kinds“ + signatures

» Assistance for analysis and synthesis

Maonti &
\

; : i tatechart i
- Assistance for transformations arenitectural s e Loty | o e s SSauence
« Pretty printing, editors (graphical + textual) :@ﬁ % Java . -*n dagrams
N ocL] b F_—E‘ l
« Composition of languages: GU, models
. N J
— mdepen_d_ent language development \ Y I
— composition of languages and tools l ‘I \ J
— language extension, aggregation !
— language inheritance (allows replacement) consistency parameterized test code
analyzer code generator generator
« Quick definition of domain specific languages (DSLs) | | |
- by reu_s_ing_ existing languages N _ S— >
— variability in syntax, context conditions, generation, I errors system w
semantics

Use of Models for Coding and Testing

4 Nico Jansen | Software Engineering | RWTH Aachen Rm
Software
Engineering

Feature Diagram for MontiCore Language Components

* MontiCore provides a set of language components that can be used as features
— Some dependencies exist, e.g. certain expressions rely on appropriate literals

* An excerpt of language variability mechanisms in MontiCore:

Expression

Basis

MClLiterals
Basis

)

MCBasic Basic
Types Symbols
MCArray MCCollection 00
Types Types Symbols
MCSimple

GenericTypes

)

MCFull
GenericTypes

N/

A4

A

MCCommon
Literals

Common Assignment .
Exp. Exp. BitExp. SetEXxp.
JavaClass
Exp.

2676 Variants possible

Grammars for these languages can be found at: https://monticore.qgithub.io/monticore/monticore-grammar/src/main/grammars/de/monticore/Grammars/

)

MCJava
Literals

FD

il

Legend:
— O optional feature

5 Nico Jansen | Software Engineering | RWTH Aachen

S

Software
Engineering

RWTH

https://monticore.github.io/monticore/monticore-grammar/src/main/grammars/de/monticore/Grammars/

MontiCore Language Zoo: Development in three Waves

« Language library built in three phases

Wave 3: SySML 55
Full & New . S o
Languages UML MontiArc SR * CAD/M 29

f‘“."f.‘"f:ob MontiGem

§ Activity D. / BPMN
Wave 2: Class D. Sequence D. Java ISON
L§20VJ2 es Object D. Sl Unit
J5a9 Statecharts OCL Feature D. S JavaLight XML
Wave 1. _ _
Components| MCBasics Expressions Statements Cardinality
MCCommon Literals Types Completeness

Legend: Many of these languages are defined using several grammars, CoCo-sets, etc.

6 Nico Jansen | Software Engineering | RWTH Aachen

S

Software
Engineering

RWTH

MontiCore — Compositional
Language Design

Language Extension

 Lets start with one language L1

* The automaton has
= 2 states and
= 2 transitions
— describing a ping pong game

L1

- Automaton language L1:

automaton PingPong {
state Ping, Pong;
Ping -> Pong

Pong -> Ping

| sc]

8 Nico Jansen | Software Engineering | RWTH Aachen

S

Software
Engineering

RWTH

Language Extension

« L2 extends L1 L1 - Automaton language L1 is extended by actions in L2:
— by new language concepts A — Actions are embedded at multiple places:
| extends
' SC |
L2 automaton PingPong {
* One model contains language concepts of both state Ping, Pong;

languages
Ping -> Pong [strokes++]
« Either L1 or L2 becomes the master language and

the other the multiply embedded sub-language Pong -> Ping [strokes++]

« Semantics, code generation is often defined together,
but ideally reuse L1-semantics, generators, etc.
should be possible

RWTH

9 Nico Jansen | Software Engineering | RWTH Aachen
Software
Engineering

Language Embedding

A new language L3 embeds L1 L2

model concepts from L2 in N

the language L1 extends: I/Iembeds
L3

Models have parts conforming to sublanguages

Languages L1 and L2 were independently developed

Enables reuse and extension of languages

Allows to define language components
— E.g. expressions, literals, type definitions.

- Automaton language L1 and action language L2 are
combined to a language embedding the actions into

the automaton:

| sc]

automaton PingPong {

state Ping, Pong;

Ping -> Pong |[|strokes++|]

Pong -> Ping |[|strokes++|]

« “Glue” can be added, e.g. the square brackets

10

Nico Jansen | Software Engineering | RWTH Aachen

S

Software
Engineering

RWTH

Language Aggregation

 An aggregated language L1 L2
L3 combines L1, L2, and more ... A
i I/Iaggregates
L3

Models are independent artifacts
— they can be edited, reused, etc. individually

Models are only semantically composed
— there is no model belonging “only” to L3

Models syntactically refer to each other
— “Symbols” are imported / exported

« Two models:

— An automaton and a java class sharing symbols (e.g.

strokes)

automaton PingPong {

state Ping, Pong;

Ping -> Pong [strokes++];

class Game {
Player a, b;
int strokes = 0;

| sc]

11 Nico Jansen | Software Engineering | RWTH Aachen

S

Software
Engineering

RWTH

Cross-Referencing & Symbol Resolution

« Symbol usages are often realized as names or expressions
— Qualification often contained in import statements
SC

import pkg.Game.*;

automaton PingPong ({
| strokes?

state Ping, Pong;

Ping -> Pong [strokes++];

cp]

package pkg;
class Game {

play.Game.strokes?

bottom-up

resolution ..
pkg.Game.strokes

--')

strokes? .

top-down

‘e
‘e
.

.
*
*
.
£
~ .
N .
\
.
~
N
\
-

4

~
AY

.
.
.
.
-
‘ L
1 L]
L]
4 -
-
L]
L
-
L
L
"
L
u
\ "
1 L]
poo
/ J
g
4 g
Q
Q
g
Q
*
*
L

resolve strokes -~
Player a, b; strokes
int strokes = 0;
12 Nico Jansen | Software Engineering | RWTH Aachen Rm

Software
Engineering

Serialization with Intermediate Representation

« Serialization: Translating object structure into character sequence

» Deserialization: Translating character sequence into object structure

« Character sequence is encoded in an encoding format (e.g., JSON, OD, but also binary formats)

« Efficient (de)serialization has to be aware of types that object structures conform to

* The serialization strategy describes how to translate between objects of a type and encoding format

« Transformation into an intermediate structure enables separating type-specific parts from type-agnostic parts

— type-specific parts can be generated _
Serialization
— relieves usage of reflection
Visitor Printer
Object Ij‘> Ij‘> Intermediate Ij‘> Ij‘> Character
Structure Representation Sequence
<j Builder <j # <j Parser <j
< Deserialization
R\WNTH

13 Nico Jansen | Software Engineering | RWTH Aachen
Software
Engineering

MontiCore — Generator Composition
for Aggregated Languages

Seamlessly Composing Generated Artifacts

« Challenge: Integrating Generated Artifacts of heterogeneous generators (mostly of different languages)

Person CD Aut

String name @ p-age >= 18 @
intage _

public class Person { // ...
protected String name; :gégéj ;%é%;
protected int age; Person p = new Person() ;
.. | :
public int getAge () { if (p.getAge() >= 18) {
return age; setState (adult) ;
} }
// ...
} // ..

RWTH

15 Nico Jansen | Software Engineering | RWTH Aachen
Software
Engineering

Seamlessly Composing Generated Artifacts

« Challenge: Integrating Generated Artifacts of heterogeneous generators (mostly of different languages)

Person CD Aut

String name @ p-age >= 18 @
intage _

public class Register { Javaj // ... Javaj
((gen)) ((gen))
static Map<Person, Integer> reg; Person p = new Person() ;
public static int searchReg(Person p) { if (Register.searchReg(p) >= 18) {
return reg.get(p):; setState (adult) ;
} }
// ...
} /] ..

RWTH

16 Nico Jansen | Software Engineering | RWTH Aachen
Software
Engineering

Composing Generators via Symbol Table

« Each symbol gets one (possibly more) templates that carries the corresponding accessor code

* When translating expressions in Freemarker templates, resolve for symbol and extract accessor

| cD]

Person

‘TypeSymbol

name =“Person”
template = ...

scopes omitted

N
ftl

String name
int age

e

‘FieldSymbol

‘FieldSymbol

name =‘name”
template = ...

name ="age”

template = ...

${tc.signature (“sym”, “context”)}

‘| ${context}.get${sym.getName ()} ()

N
ftl

${tc.signature (“sym”, “context”) }
Register.searchReg(${context})

17 Nico Jansen | Software Engineering | RWTH Aachen

RWTH

S Software
Engineering

Seamlessly Composing Generated Artifacts — Generator View

« Challenge: Integrating Generated Artifacts of heterogeneous generators (mostly of different languages)

String name
intage _
:FieldSymbol
name ="age”
template = ...)

${tc.signature (“sym”, “context”) }

${context}).get${sym.getName()}()<_

Person CD

I

Aut

.age >=18

ftl

-

-
L

// ...
${tc.genType(type)} p = ${tc.inst(type)}:;

if (${tc.acc(expr)}) {
setState(adult);

¥

// ..

18 Nico Jansen | Software Engineering | RWTH Aachen

RWTH

S Software
Engineering

Thank you
for your attention

