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• Efficiently engineering software languages demands their reuse through composition

• Composition operators emerged acting on different

• constituents of languages,

• technological spaces,

• and purposes.

• Ten years ago, Erdweg et. al. classified language composition into 5 categories.

• Innovations in software language engineering question the validity of these categories

→ Uncovering the current state of language composition and drawing a detailed map of language 

composition operators to guide SLE researchers and practitioners
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Uncovering the current state of language composition

Motivation
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• Language Extension: 

• Extend a base language definition with rules.

• Example: Adding rules to an inherited grammar

• Language Restriction: 

• Language extension restricts the language.

• Example: Use context condition to prevent 

usage of certain modeling elements.

• Language Unification: 

• Composition on equal terms, i.e., without 

direction, using glue code.

• Example: Names on transitions of statecharts

refer to names of properties in a classdiagram
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Classifying composition operators for software languages

Language Composition Untangled [1]

• Self-extension: 

• Embedding of languages into a host language 

by providing a host language model that 

encapsulates the embedded language’s 

concept

• Example: A class library in a GPL

• Extension Composition: 

• Language extensions can work together
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Conducting a systematic literature review on software language composition

Research Method

("metamodel" OR "modelling language" OR "modeling 
language" OR "software language" OR "DSL" OR "domain-
specific language" OR "grammar") AND ("composition" OR 

"integration" OR "derivation" OR "extension")

Springer

390
IEEE

609
WoS

2237
ACM

320
Scopus

5206

• Classified the studies along the 

classification of LCU 

• Developed a questionnaire for detailed 

analyses and comparability of extracted 

information

• Classified the first 20 studies in parallel 

among authors to avoid misunderstandings



Which language composition 
operators exist?

Research Question 1



Operators on Syntax

Which language composition operators exist?
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• Parameters: A production of a base grammar and a 

production of a client grammar

• Result: A new grammar in which the production of the base 

grammar is extended with an alternative containing the client 

grammar’s production

• Effect on language instances (models): Models of the new 

grammar may use base and client grammar production 

instances in the same model.

• Additional: Explicit extensions (e.g., keyword interface in 

MontiCore)

• Technological space: MontiCore, SugarJ
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Language extension operator on syntax

Grammar Embedding [14,22,25,32]
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• Parameters: A parent metamodel, a mixin

metamodel (abstract), concepts of the mixin

metamodel that should be added to the 

parent metamodel

• Result: A metamodel featuring concepts 

from the parent metamodel including the 

mixin element

• Additional: The result of a mixin cannot be 

used as a mixin element

• Technological space: ADOxx
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Language extension operator on syntax

Metamodel Mixins [71]
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• Metamodel Fragment is a container for a 

metamodel exposing provided and required 

interfaces

• Provided interface exposes metaclasses

• Required interface demands implementation by 

another metamodel fragment

• Parameter: Mapping of client’s provided interface 

class to base fragment’s required interface

• Result: Extended metamodel with realized 

required interface

• Technological space: n.a.
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Language extension operator on syntax

Metamodel Fragment Composition [70]
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• Parameters: Two textual syntax definition 

• Result: Unified syntax by using annotations in 

the base language realizing concepts of the 

client language

• Base language must support annotations

• Technological space: n.a.
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Language unification operator on syntax

Annotation-Based Language Unification [53]

public class Person {

private int id; //…

}

<entity class="model.Person" name="Person">

<table name="PERSON"/>

<attributes>

<id name="id">

<column name="IDENTIFIER"/>

</id>

...

</entity>

@Entity(name = "Person")

@Table(name = "PERSON")

public class Person {

@Id

@Column(name = "IDENTIFIER")

private int id;

//…

}
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Language unification operator on syntax

Metamodel Merging [51,56]

• Parameters: Two metamodels, set of morphisms, 

set of constraints

• Result: One metamodel featuring classes of both 

metamodel including merged classes based on 

name similarity fulfilling constraints.

• Technological space: n.a.



Operators on Syntax and 
Semantics

Which language composition operators exist?
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• Language Component:

• Comprises a grammar, well-formedness rules 

and a code generator

• The interface consists of provided and required 

extensions making constituents explicit

• Parameters: Required interface point of a base 

language component, provided interface point of 

a client language component

• Result: A new language component and a new 

language embedding client provided extensions 

into base languages required extensions

• Technological space: MontiCore
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Language extension operator on syntax and semantics

Language Component Embedding [12, 15]
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• Language module description

• comprises definitions of CS, AS and 

computation rules (e.g. for semantics)

• Computation rules are unambiguously related 

to a single AS element

• Parameters: Two language modules, a set of glue 

rules overriding rules of the input languages

• Result: A new language module extending from 

both modules and comprising overriding rules.

• Technological space: LISA
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Language unification operator on syntax´and semantics

Object-Oriented Language Unification [50]
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• Parameters: Metamodel, elements to slice

• Result: New metamodel without the sliced 

elements

• Technological space: GEMOC / Melange
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Language restriction operator on syntax and semantics

Language Slicing [21]

Negative slicing 

with input D



Which language definition 
dimensions are supported?

Research Question 2
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• 10/24 (41.6%) operators support composition of 

syntax and semantics

• Syntax mainly defined in grammars and 

metamodels

• Semantics realized via code generators, internal 

and external interpreters, and aspects

• No operators composing

• Grammars and metamodels

• Semantics in different realizations
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Language Constituents Supported by Composition Operators
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Which properties do language 
composition operators have?

Research Question 3
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• Language Component Embedding [12,15] and 

Unification [55]

• Language components representing language 

fragments including syntax and semantics

• Provided and required extensions expose the 

language’s concepts

• Composition via mapping between interfaces 

enables black-box language composition
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How much knowledge about language internals is necessary for composition?

Blackbox Language Composition Operators

• Metamodel Fragment Composition [70]

• Fragments encapsulate metamodels

• Expose metamodel elements via provided and 

required interfaces

• Composition by binding interfaces

Automaton

Automaton
Grammar

Interface for

3 21
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Modular

• Grammar Embedding [14, 22, 25, 32]:

• Creates a new grammar where the base 

production is extended with the client 

production as an alternative

• The original grammars are referenced in the 

resulting grammar

• No information is lost
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The original languages stay independent origins after composition

Traceability and Modularity of Composition

Non-modular

• Metamodel Merging [51, 56]:

• Merges two metamodels into one

• After the composition the concept’s origins are 

not visible in the result anymore

• Metamodel Mixins [71]:

• Takes a metamodel and a mixin model as input

• Creates a new metamodel comprising 

metamodel classes and mixin classes

• It is not clear which concepts origin from mixin

19 5
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• Metamodel Mixins [71]

• Parameters: metamodel, mixin element

• The resulting metamodel is not usable as mixin

• Language Union [18]

• Merge new rules into an existing language

• Rules do not need to be part of another 

language

• Resulting language definition cannot be 

merged into an existing language
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Can the result of composition again be used as input for the operator?

Closed Under Composition

• Language Module Restriction [18, 63]

• Extend a language without inheriting concepts

• E.g., selecting concepts not to be reused

18 6
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• Heterogeneous composition

• Composing languages across different 

technological spaces

• E.g., embedding a Neverlang language 

into a Xtext language

• Black-box composition

• Hiding implementation details of languages

• Only three operators supported currently

September 28, 2022

LangDev Meetup ‘22 | Jérôme Pfeiffer

22

Our observations lead to challenges for future investigations

Challenges

• Automated composition

• Minimizing the manual effort and white-box 

knowledge after the composition

• Relevant for black-box approaches

• Alignment of operators

• Do we need this many composition operators?

• How similar are the operators?

• Which are the ones most frequently used?

1

2

3

4
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• Motivation: Uncovering the current state of 

language composition ten years after the 

classification of “Language Composition 

Untangled”

• Research Questions:

1. Which composition operators exist?

2. Which language dimension are supported?

3. Which properties do the operators have?

→ 8762 papers in initial search → 45 relevant
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Summary

a) Black-box

c) Closed under composition

b) Traceability and modularity

• Results:

• We found 24 operators

• Extension of syntax (8) and semantics (4)

• Unification of syntax (6) and semantics (4)

• Restriction on syntax and semantics (2)

• 2/3 of the operators are technology-specific

18 6

19 5
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