
Institute for Control Engineering of Machine

Tools and Manufacturing Units (ISW)

Language 
Composition 
Operators

A Literature Review

Jérôme Pfeiffer,

David Schmalzing, 

Andreas Wortmann

Photo by Matt Howard on Unsplash



© ISW University of Stuttgart

• Efficiently engineering software languages demands their reuse through composition

• Composition operators emerged acting on different

• constituents of languages,

• technological spaces,

• and purposes.

• Ten years ago, Erdweg et. al. classified language composition into 5 categories.

• Innovations in software language engineering question the validity of these categories

→ Uncovering the current state of language composition and drawing a detailed map of language 

composition operators to guide SLE researchers and practitioners

September 28, 2022

LangDev Meetup ‘22 | Jérôme Pfeiffer

2

Uncovering the current state of language composition

Motivation



© ISW University of Stuttgart

• Language Extension: 

• Extend a base language definition with rules.

• Example: Adding rules to an inherited grammar

• Language Restriction: 

• Language extension restricts the language.

• Example: Use context condition to prevent 

usage of certain modeling elements.

• Language Unification: 

• Composition on equal terms, i.e., without 

direction, using glue code.

• Example: Names on transitions of statecharts

refer to names of properties in a classdiagram

September 28, 2022

LangDev Meetup ‘22 | Jérôme Pfeiffer

3

Classifying composition operators for software languages

Language Composition Untangled [1]

• Self-extension: 

• Embedding of languages into a host language 

by providing a host language model that 

encapsulates the embedded language’s 

concept

• Example: A class library in a GPL

• Extension Composition: 

• Language extensions can work together



© ISW University of Stuttgart September 28, 2022

LangDev Meetup ‘22 | Jérôme Pfeiffer

4

Conducting a systematic literature review on software language composition

Research Method

("metamodel" OR "modelling language" OR "modeling 
language" OR "software language" OR "DSL" OR "domain-
specific language" OR "grammar") AND ("composition" OR 

"integration" OR "derivation" OR "extension")

Springer

390
IEEE

609
WoS

2237
ACM

320
Scopus

5206

• Classified the studies along the 

classification of LCU 

• Developed a questionnaire for detailed 

analyses and comparability of extracted 

information

• Classified the first 20 studies in parallel 

among authors to avoid misunderstandings



Which language composition 
operators exist?

Research Question 1



Operators on Syntax

Which language composition operators exist?



© ISW University of Stuttgart

• Parameters: A production of a base grammar and a 

production of a client grammar

• Result: A new grammar in which the production of the base 

grammar is extended with an alternative containing the client 

grammar’s production

• Effect on language instances (models): Models of the new 

grammar may use base and client grammar production 

instances in the same model.

• Additional: Explicit extensions (e.g., keyword interface in 

MontiCore)

• Technological space: MontiCore, SugarJ

September 28, 2022

LangDev Meetup ‘22 | Jérôme Pfeiffer

7

Language extension operator on syntax

Grammar Embedding [14,22,25,32]



© ISW University of Stuttgart

• Parameters: A parent metamodel, a mixin

metamodel (abstract), concepts of the mixin

metamodel that should be added to the 

parent metamodel

• Result: A metamodel featuring concepts 

from the parent metamodel including the 

mixin element

• Additional: The result of a mixin cannot be 

used as a mixin element

• Technological space: ADOxx

September 28, 2022

LangDev Meetup ‘22 | Jérôme Pfeiffer

8

Language extension operator on syntax

Metamodel Mixins [71]



© ISW University of Stuttgart

• Metamodel Fragment is a container for a 

metamodel exposing provided and required 

interfaces

• Provided interface exposes metaclasses

• Required interface demands implementation by 

another metamodel fragment

• Parameter: Mapping of client’s provided interface 

class to base fragment’s required interface

• Result: Extended metamodel with realized 

required interface

• Technological space: n.a.

September 28, 2022

LangDev Meetup ‘22 | Jérôme Pfeiffer

9

Language extension operator on syntax

Metamodel Fragment Composition [70]



© ISW University of Stuttgart

• Parameters: Two textual syntax definition 

• Result: Unified syntax by using annotations in 

the base language realizing concepts of the 

client language

• Base language must support annotations

• Technological space: n.a.

September 28, 2022

LangDev Meetup ‘22 | Jérôme Pfeiffer

10

Language unification operator on syntax

Annotation-Based Language Unification [53]

public class Person {

private int id; //…

}

<entity class="model.Person" name="Person">

<table name="PERSON"/>

<attributes>

<id name="id">

<column name="IDENTIFIER"/>

</id>

...

</entity>

@Entity(name = "Person")

@Table(name = "PERSON")

public class Person {

@Id

@Column(name = "IDENTIFIER")

private int id;

//…

}



© ISW University of Stuttgart September 28, 2022

LangDev Meetup ‘22 | Jérôme Pfeiffer

11

Language unification operator on syntax

Metamodel Merging [51,56]

• Parameters: Two metamodels, set of morphisms, 

set of constraints

• Result: One metamodel featuring classes of both 

metamodel including merged classes based on 

name similarity fulfilling constraints.

• Technological space: n.a.



Operators on Syntax and 
Semantics

Which language composition operators exist?



© ISW University of Stuttgart

• Language Component:

• Comprises a grammar, well-formedness rules 

and a code generator

• The interface consists of provided and required 

extensions making constituents explicit

• Parameters: Required interface point of a base 

language component, provided interface point of 

a client language component

• Result: A new language component and a new 

language embedding client provided extensions 

into base languages required extensions

• Technological space: MontiCore

September 28, 2022

LangDev Meetup ‘22 | Jérôme Pfeiffer

13

Language extension operator on syntax and semantics

Language Component Embedding [12, 15]



© ISW University of Stuttgart

• Language module description

• comprises definitions of CS, AS and 

computation rules (e.g. for semantics)

• Computation rules are unambiguously related 

to a single AS element

• Parameters: Two language modules, a set of glue 

rules overriding rules of the input languages

• Result: A new language module extending from 

both modules and comprising overriding rules.

• Technological space: LISA

September 28, 2022

LangDev Meetup ‘22 | Jérôme Pfeiffer

14

Language unification operator on syntax´and semantics

Object-Oriented Language Unification [50]



© ISW University of Stuttgart

• Parameters: Metamodel, elements to slice

• Result: New metamodel without the sliced 

elements

• Technological space: GEMOC / Melange

September 28, 2022

LangDev Meetup ‘22 | Jérôme Pfeiffer

15

Language restriction operator on syntax and semantics

Language Slicing [21]

Negative slicing 

with input D



Which language definition 
dimensions are supported?

Research Question 2



© ISW University of Stuttgart

• 10/24 (41.6%) operators support composition of 

syntax and semantics

• Syntax mainly defined in grammars and 

metamodels

• Semantics realized via code generators, internal 

and external interpreters, and aspects

• No operators composing

• Grammars and metamodels

• Semantics in different realizations

September 28, 2022

LangDev Meetup ‘22 | Jérôme Pfeiffer

17

Language Constituents Supported by Composition Operators

4
4

2

8
6

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Language
Extension

Language
Unification

Language
Restriction

Operators on syntax

Operators on syntax and semantics



Which properties do language 
composition operators have?

Research Question 3



© ISW University of Stuttgart

• Language Component Embedding [12,15] and 

Unification [55]

• Language components representing language 

fragments including syntax and semantics

• Provided and required extensions expose the 

language’s concepts

• Composition via mapping between interfaces 

enables black-box language composition

September 28, 2022

LangDev Meetup ‘22 | Jérôme Pfeiffer

19

How much knowledge about language internals is necessary for composition?

Blackbox Language Composition Operators

• Metamodel Fragment Composition [70]

• Fragments encapsulate metamodels

• Expose metamodel elements via provided and 

required interfaces

• Composition by binding interfaces

Automaton

Automaton
Grammar

Interface for

3 21



© ISW University of Stuttgart

Modular

• Grammar Embedding [14, 22, 25, 32]:

• Creates a new grammar where the base 

production is extended with the client 

production as an alternative

• The original grammars are referenced in the 

resulting grammar

• No information is lost

September 28, 2022

LangDev Meetup ‘22 | Jérôme Pfeiffer

20

The original languages stay independent origins after composition

Traceability and Modularity of Composition

Non-modular

• Metamodel Merging [51, 56]:

• Merges two metamodels into one

• After the composition the concept’s origins are 

not visible in the result anymore

• Metamodel Mixins [71]:

• Takes a metamodel and a mixin model as input

• Creates a new metamodel comprising 

metamodel classes and mixin classes

• It is not clear which concepts origin from mixin

19 5



© ISW University of Stuttgart

• Metamodel Mixins [71]

• Parameters: metamodel, mixin element

• The resulting metamodel is not usable as mixin

• Language Union [18]

• Merge new rules into an existing language

• Rules do not need to be part of another 

language

• Resulting language definition cannot be 

merged into an existing language

September 28, 2022

LangDev Meetup ‘22 | Jérôme Pfeiffer

21

Can the result of composition again be used as input for the operator?

Closed Under Composition

• Language Module Restriction [18, 63]

• Extend a language without inheriting concepts

• E.g., selecting concepts not to be reused

18 6



© ISW University of Stuttgart

• Heterogeneous composition

• Composing languages across different 

technological spaces

• E.g., embedding a Neverlang language 

into a Xtext language

• Black-box composition

• Hiding implementation details of languages

• Only three operators supported currently

September 28, 2022

LangDev Meetup ‘22 | Jérôme Pfeiffer

22

Our observations lead to challenges for future investigations

Challenges

• Automated composition

• Minimizing the manual effort and white-box 

knowledge after the composition

• Relevant for black-box approaches

• Alignment of operators

• Do we need this many composition operators?

• How similar are the operators?

• Which are the ones most frequently used?

1

2

3

4



© ISW University of Stuttgart

• Motivation: Uncovering the current state of 

language composition ten years after the 

classification of “Language Composition 

Untangled”

• Research Questions:

1. Which composition operators exist?

2. Which language dimension are supported?

3. Which properties do the operators have?

→ 8762 papers in initial search → 45 relevant

September 28, 2022

LangDev Meetup ‘22 | Jérôme Pfeiffer

23

Summary

a) Black-box

c) Closed under composition

b) Traceability and modularity

• Results:

• We found 24 operators

• Extension of syntax (8) and semantics (4)

• Unification of syntax (6) and semantics (4)

• Restriction on syntax and semantics (2)

• 2/3 of the operators are technology-specific

18 6

19 5

3 21



email

phone +49 (0) 711 685-

University of Stuttgart

Institute for Control Engineering of Machine

Tools and Manufacturing Units (ISW)

Institute for Control Engineering of Machine Tools and Manufacturing Units (ISW)

Seidenstrasse 36 • 70174 Stuttgart • Germany

Jérôme Pfeiffer

94500

jerome.pfeiffer@isw.uni-stuttgart.de

Research Assistant



© ISW University of Stuttgart

[1] Sebastian Erdweg, Paolo G. Giarrusso, and Tillmann Rendel. 2012. Language Composition Untangled. In Proceedings of the Twelfth Workshop on Language Descriptions, Tools, 

and Applications (Tallinn, Estonia) (LDTA ’12). Association for Computing Machinery, New York, NY, USA, Article 7, 8 pages.

[14] Arvid Butting, Katrin Hölldobler, Bernhard Rumpe, and AndreasWortmann. 2021. Compositional Modelling Languages with Analytics and Construction Infrastructures Based on 

Object-Oriented Techniques - The MontiCore Approach. In Composing Model-Based Analysis Tools. Springer, 217–234.

[22] Lukas Diekmann and Laurence Tratt. 2013. Parsing composed grammars with language boxes. In Workshop on Scalable Language Specifications.

[25] Sebastian Erdweg and Felix Rieger. 2013. A framework for extensible languages. In Proceedings of the 12th international conference on Generative programming: concepts & 

experiences. 3–12. 

[32] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio Navarro Perez, Bernhard Rumpe, Steven Völkel, and Andreas Wortmann. 2015. Composition of heterogeneous 

modeling languages. In International Conference on Model-Driven Engineering and Software Development. Springer, 45–66.

[58] Christoph Rieger, Martin Westerkamp, and Herbert Kuchen. 2018. Challenges and Opportunities of Modularizing Textual Domain-Specific Languages. MODELSWARD (2018), 

387–395.

[70] Srđan Živković and Dimitris Karagiannis. 2015. Towards metamodelling-in-the-large: Interface-based composition for modular metamodel development. In Enterprise, Business-

Process and Information Systems Modeling. Springer, 413–428.

[53] Milan Nosál, Matúš Sulír, and Ján Juhár. 2016. Language composition using source code annotations. Computer Science and Information Systems 13, 3 (2016), 707–729.

[9] Benjamin Braatz and Christoph Brandt. 2014. A framework for families of domain-specific modelling languages. Software & Systems Modeling 13, 1 (2014), 109–132.

[51] Bart Meyers, Antonio Cicchetti, Esther Guerra, and Juan De Lara. 2012. Composing textual modelling languages in practice. In Proceedings of the 6th International Workshop 

on Multi-Paradigm Modeling. 31–36.

September 28, 2022

LangDev Meetup ‘22 | Jérôme Pfeiffer

25

Literature



© ISW University of Stuttgart

[56] Fazle Rabbi, Yngve Lamo, and Lars Michael Kristensen. 2017. A Model Driven Engineering Approach for Heterogeneous Model Composition. In International Conference on 

Model-Driven Engineering and Software Development. Springer, 198–221.

[12] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. 2018. Modeling language variability with reusable language components. In 

Proceedings of the 22nd International Systems and Software Product Line Conference-Volume 1. 65–75.

[15] Arvid Butting, Jerome Pfeiffer, Bernhard Rumpe, and Andreas Wortmann. 2020. A compositional framework for systematic modeling language reuse. In Proceedings of the 23rd 

ACM/IEEE International Conference on Model Driven Engineering Languages and Systems. 35–46.

[50] Marjan Mernik. 2013. An object-oriented approach to language compositions for software language engineering. Journal of Systems and Software 86, 9 (2013), 2451–2464.

[21] Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais, and Jean-Marc Jézéquel. 2015. Melange: A meta-language for modular and reusable development of dsls. 

In Proceedings of the 2015 ACM SIGPLAN International Conference on Software Language Engineering. 25–36.

[55] Jérôme Pfeiffer and Andreas Wortmann. 2021. Towards the Black-Box Aggregation of Language Components. In 2021 ACM/IEEE International Conference on Model Driven 

Engineering Languages and Systems Companion (MODELS-C). IEEE, 576–585.

[71] Srźan źivkoviź and Dimitris Karagiannis. 2016. Mixins and Extenders for Modular Metamodel Customisation. In Proceedings of the 18th International Conference on Enterprise 

Information Systems. 259–270.

[18] Matteo Cimini. 2020. On the effectiveness of higher-order logic programming in language-oriented programming. In International Symposium on Functional and Logic 

Programming. Springer, 106–123.

[63] Edoardo Vacchi and Walter Cazzola. 2015. Neverlang: A framework for feature-oriented language development. Computer Languages, Systems & Structures 43 (2015), 1–40.

September 28, 2022

LangDev Meetup ‘22 | Jérôme Pfeiffer

26

Literature


