
Web-based Tools for
 (Domain Specific)
 Language Engineering

Jürgen Mutschall

Aachen, 26.09.2022

LangDev 2022

Agenda (30min)

Web-based Tools for (Domain Specific) Language Engineering

1. Deriving a tool architecture from the „Open Platform“ requirements

2. Design decisions and system architecture

3. Featured Aspect: Blended Modeling and Projectional Editing

4. Live demo of some tool functionality under development

2

Angabe Bildquelle

An Open Platform for Systems
 and Business Engineering Tools

“A platform for developing systems and
business engineering tools must be unbiased
regarding the languages used to define the
models and the analyses that run on them.
Instead it should provide the infrastructure for
defining languages, for working effectively with
large, multi-paradigm models in a collaborative
manner, and for integrating arbitrary model
analysis and transformation services.”

(Markus Voelter, December 2019)

Requirements List
Summary of the requirements in the whitepaper by Markus Voelter

End User Perspective

 Scalable

 Collaboration and Versioning

 Migration Support

 Roles, View and Contexts

 Native to the Web

 IDE Features

 Liveness

 Growable

 Continuous Integration

Language Engineering Perspective

 Multi-Paradigm

 Multi-Notational

 Language Composition

 External Tools

Logical Architecture
Tools and tools to develop tools …

5

Tools

Standard Interchange Formats,

Notations and Languages

Platforms

 (OS, Browser)

Execution Environment
(e.g. model interpreter, BPL execution)

Modeling

Tool

Model

Transform.
IDE / Editor

functionality

Parser /

Generator
Simulation Compiled

Model Based

Software

Components

Engineering Workflow

Model

Repository

Model Driven

Tools / DSLs

DSL

Development

Tools

Database
General Purpose

 Languages
(Cloud)-Services

Container / Cluster

Cloud Provider

IDEs for Native Tool

development
CI/CD tools

Requirements List+
Extended Summary of the Requirements

End User Perspective

 Scalable

 Collaboration and Versioning

 Migration Support

 Roles, View and Contexts

 Native to the Web

 IDE Features

 Liveness

 Growable

 Continuous Integration

Language Engineering Perspective

 Multi-Paradigm

 Multi-Notational

 Language Composition

 External Tools

Platform Engineering Perspective

 Container- and Cluster-Support

 “State of the Art”-Development Tools

 OS-independent, but Compilation to Native Code

 Meet Expectations in Terms of User Experience

Findings from Previous Developmental Approaches
“Empiricism is wiser than wishful thinking” or “You learn from your mistakes!”

 The most successful tools have a very low barrier to entry.

 The user acceptance of an extension for an existing, well known tool is higher than a new tool and/or workflow.

 A developer is also a user. The user prefers “good-looking” tools.

 The user experience is becoming more and more important.

 DSL engineering, especially the definition and validation of type systems, is hard.

 Only few developers are experts in DSL engineering, many developers design a DSL almost “once in a lifetime”.

 A lot of DSLs are simple configuration languages without advanced typing/semantics (JSON with “syntactic sugar”)

 Reuse and composition of DSLs is becoming more and more important.

 There have been some major failures in the establishment of standards for graphical modeling languages/notations,

 constraint and transformation languages, execution semantics and model interchange formats.

 But without any agreement on common standards a tool platform cannot be “open”.

 Graphical modeling tools/notations are easy to use, but it is difficult and very time-consuming to design good/complete

 models, which can be used for code generation or simulation.

 It is very difficult to find the correct balance between expressiveness and practical usability.

 Complex constraints, relations, generic types and annotations are more easy described in a textual language.

 Blended modeling is the future.

7

Design Decisions
Balance of Best Practices and New Approaches

Client

 Completely browser based client software

 no client installation

 Typescript, Microsoft VS Code and Angular

 as client technology

Server

 Platform services based

 on Quarkus Microservice Architecture

 Modeling services (e.g. transformation,

 language server) implemented in Java;

 compiled to the metal by GraalVM

 Services running in Kubernetes / Docker;

 cluster support and cloud provider ready

 MS VSCode server installation / workspaces

 Headless Eclipse / workspaces / Xtext / EMF

 Gitlab CI/CD pipeline / versioning

 Model repository based on SysML V2 standard.

 Using standard SQL database for scalability and performance reasons.

 SysML V2 Kernel Modeling Language as interchange format

Interfaces / Networking

 SysML Systems Modeling API for remote access to the model repository

 OpenAPI based REST/websocket interfaces for Quarkus remote access

 (Graphical) Language Server Protocol

8

Tools

Standard Interchange Formats,

Notations and Languages

Platforms

 (OS, Browser)

Execution Environment
(e.g. model interpreter, BPL execution)

Modeling

Tool

Model

Transform.

IDE / Editor

functionality

Parser /

Generator
Simulation Compiled

Model Based

Software

Components

Engineering Workflow

Model

Repository

Model Driven

Tools / DSLs

DSL

Development

Tools

Database
General Purpose

 Languages
(Cloud)-Services

Container / Cluster

Cloud Provider

IDEs for Native Tool

development
CI/CD tools

Visual Studio

Code Typescript

Angular

VS Code Server

SysML V2 Kernel

 Modeling Language

and Systems Modeling API

Architecture

9

Server

Browser / Client
VSCode

Angular App

Angular based

 VSCode extension

optional remote

 VSCode extension

Quarkus

Microservices

Headless Eclipse

DSL textual editors

generated

DSL VScode extension

Language servers

EMF based services Services

Model repository

Database

Language Server Protocol OpenAPI Rest-API SysML V2 API protocol

GitLab

Xtext-based VSCode editor for multi-paradigm Source Editing
DEMO

• Multiple DSLs can be mixed as

needed.

• Working on one common model

• In this example a simple

statemachine DSL is mixed with a

general programming language

(GPL).

• The annotation, defined in the

GPL is used to annotate the

simple “state” entity of the

statemachine DSL.

• The code generator for the

statemachine DSL delegates the

annotation aspect to the code

generator for the GPL.

10

Statemachine

GPL

Excurse: Projectional Editing and Blended Modeling
Integration of graphical and textual (and multi-paradigm) modeling

11

“Blended modeling means to allow engineers to freely choose and switch between several

different notations for the same domain-specific concepts captured in a DSML.

Traditionally, DSML tools focus on one specific notation (such as text, diagrams, tables or forms).

This limits human communication, especially across engineering disciplines. A notation that is well-

understood by one engineering discipline may not be understood by engineers from another

discipline. Moreover, engineers (from the same or different disciplines) may have different notation

preferences; not supporting multiple notations negatively affects engineers’ throughput.”

 (ITEA3 EU project BUMBLE, 2019)

“Projectional Editing (as an alternative to Source Editing) is the idea that the core definition of a

system should be held in a model and edited through projections. … With projectional editing the

abstract representation is the is core definition of the system. A tool manipulates the abstract

representation and projects multiple editable representations for the programmer to change the

definition of the system. “ (Martin Fowler, 2008)

Model AST

Projection 1

Projection 2 EditorModel1

EditorModel2

View 3

Proj./View 4 AST Synchronization

Blended Modeling is More General than the Projection of an AST
DEMO: The goal is to mix arbitrary
UI elements, graphical structure and
textual code

Simple example:

A model entity has an attribute “risk level” which

has one of the three states “unknown”, “low” or “high”.

In a textual editor the user would edit the risk level

attribute by changing the specific line in the code editor

(annotation or property). The syntax autocompletion

of the editor may reduce the count of keyclicks

to a minimum.

12

Screenshot of Editor

This is ok, if the attribute is seldom changed and

the count of entity instances is small.

But if the user wants to do an risk assessment / adjustment on a

global level, e.g. comparing entities, (s)he would prefer a specific

user interface or editor to do this. This drag’n-drop editor is not a

“projection” of an AST.

The columns of the table editor are the possible values/enum of

the annotation of entities.

Elements for Blended Modeling
DEMO

• Goal: Replacing the SVG-Sprotty-

based editor by an Angular based

graphical editor with embedded

Monaco code editor

• All features of the VSCode editor

environment (autocompletion,

code lenses, etc.) embedded in an

expandable angular component

integrated in a graphics

component.

• And even more, see next slide

13

Blended Modeling in 3D
DEMO

• The graphical editor is part of a

powerful 3D environment.

• Every user interface can be

integrated into a 3D visualization,

e.g. a manufacturing line, digital

twin of a city, etc

14

