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Program Analysis



P r o g r a m        A n a l y s i s

Type checking, dataflow analysis, linting, pretty printing, code generation, [...]



Intended behavior

< Analysis Tool >< Analysis Tool >
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Breaking down the analysis

< Analysis Tool >



Property probes



● A live observer of a property on an AST node

Property probe definition

int x = 123;

return   x;
Property: type()

Result: int
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Demo - CodeProber



CodeProber Architecture
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TS / Monaco Editor
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Show UI, Traverse AST, invoke properties,
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CodeProber Architecture

Client
TS / Monaco Editor

Server
Java

Analysis Tool

Show UI, Traverse AST, invoke properties,
handle changes (source code & underlying tool), [..]

Parse (Text->AST)

WS/RPC
Java

Reflection



Example uses

PMD

WALA

SpotBugs



More example uses

ChocoPy

Featherweight Java

SimpliC

IntraJ (Java Compiler with CFG analysis)
< Your analyzer here >
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● Properties must be represented as methods on nodes.
● Must have source code location in normal nodes
● Must be able to traverse the tree

○ (To support the “exploration” aspect of clicking the output of the probe)

● JastAdd is a meta-compiler supporting reference attribute grammars (RAGs)
● JastAdd fulfills these requirements!

○ https://jastadd.cs.lth.se/web/
● Non-JastAdd tools can work too

CodeProber requirements

https://jastadd.cs.lth.se/web/


Node Locators
How we track AST nodes across multiple edits to a source file



Terminology

A step connects parent and child nodes.

A list of steps is called a “node locator”.
Block

List

VarDecl

Stmt



A step connects parent and child nodes.

A list of steps is called a “node locator”.

What step types exist, and how do you combine them?

● 🏃 Speed
● 🎯 Accuracy

Terminology

Block

List

VarDecl

Stmt
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1) Child

E.g “node.getChild(3)”

2) FN (“Function”)

E.g “node.desugar()”

3) TAL (“Type At Location”)

E.g “CallExpr at line 7, column 12”

AST Step types

👍 Fast
👎 Overly specific (brittle)

👍 Versatile
👎 Hard to (automatically) create

👍 Resilient
👎 Sometimes slow and/or ambiguous



Node Locator samples



Node Locator samples

[ Child(0), TAL(5:15,5:16,13,IntegerLiteral) ]

Pick first file Search within single file (fast)



Node Locator samples

[ Child(0), TAL(5:15,5:16,13,IntegerLiteral) ]

(CFG Entry)
[ Child(0), TAL(3:1,6:1,4,MethodDecl), FN(“entry”) ]



(String type)
[ FN(“getLibCompilationUnit”, “java.lang.String”),
  TAL(0:0,0:0,2,ClassDecl) ]

Node Locator samples

[ Child(0), TAL(5:15,5:16,13,IntegerLiteral) ]

(CFG Entry)
[ Child(0), TAL(3:1,6:1,4,MethodDecl), FN(“entry”) ]



Thank you for listening!

https://youtu.be/d-KvFy5h9W0 https://git.cs.lth.se/an6308ri/code-prober

5min demo Source code

https://youtu.be/d-KvFy5h9W0
https://git.cs.lth.se/an6308ri/code-prober


< Bonus slides >

(Not shown during presentation)



Creating Node Locators: 2 steps



 

Result: [FN(“desugar”), Child(3), Child(5)] 

Step 1 - construct naive locator

Block

Stmt

FN(“desugar”)

Child(3) 

Child(5) 

List

VarDecl
loc:10:20



Input: [FN(“desugar”), Child(3), Child(5)] 

For each sequence of 1+ ‘Child’ steps:

if (sequence as ‘TAL’ is unambiguous) {

replace sequence with a single TAL

}

Result: [FN(“desugar”), TAL(10:20,VarDecl))

Step 2 - Merge Child into TAL

Block

List

VarDecl
loc:10;20

Stmt


