
Property probes
Source code based exploration of program analysis results

Anton Risberg Alaküla, anton.risberg_alakula@cs.lth.se
PhD student @ department of Computer Science, Lund University

mailto:anton.risberg_alakula@cs.lth.se

Program Analysis

P r o g r a m A n a l y s i s

Type checking, dataflow analysis, linting, pretty printing, code generation, [...]

Intended behavior

< Analysis Tool >< Analysis Tool >

What if…

< Analysis Tool >

What if…

< Analysis Tool >

< Analysis Tool >

Breaking down the analysis

< Analysis Tool >

Property probes

● A live observer of a property on an AST node

Property probe definition

int x = 123;

return x;
Property: type()

Result: int

● A live observer of a property on an AST node
○ Evaluate a property and present the results (ref: watch expressions)

Property probe definition

int x = 123;

return x;
Property: type()

Result: int

● A live observer of a property on an AST node
○ Evaluate a property and present the results (ref: watch expressions)
○ Live / up-to-date (ref: live programming)

Property probe definition

int x = 123;

return x;
Property: type()

Result: int

● A live observer of a property on an AST node
○ Evaluate a property and present the results (ref: watch expressions)
○ Live / up-to-date (ref: live programming)

■ Across multiple versions of a source file

Property probe definition

int x = 123;

return x;
Property: type()

Result: int

● A live observer of a property on an AST node
○ Evaluate a property and present the results (ref: watch expressions)
○ Live / up-to-date (ref: live programming)

■ Across multiple versions of a source file

Property probe definition

int x = 123;

return x;
Property: type()

Result: int

Demo - CodeProber

CodeProber Architecture

Client
TS / Monaco Editor

Server
Java

Show UI, Traverse AST, invoke properties,
handle changes (source code & underlying tool), [..]

WS/RPC

CodeProber Architecture

Client
TS / Monaco Editor

Server
Java

Analysis Tool

Show UI, Traverse AST, invoke properties,
handle changes (source code & underlying tool), [..]

Parse (Text->AST)

WS/RPC
Java

Reflection

Example uses

PMD

WALA

SpotBugs

More example uses

ChocoPy

Featherweight Java

SimpliC

IntraJ (Java Compiler with CFG analysis)
< Your analyzer here >

● Properties must be represented as methods on nodes.

CodeProber requirements

● Properties must be represented as methods on nodes.
● Must have source code location in normal nodes

CodeProber requirements

● Properties must be represented as methods on nodes.
● Must have source code location in normal nodes
● Must be able to traverse the tree

○ (To support the “exploration” aspect of clicking the output of the probe)

CodeProber requirements

● Properties must be represented as methods on nodes.
● Must have source code location in normal nodes
● Must be able to traverse the tree

○ (To support the “exploration” aspect of clicking the output of the probe)

● JastAdd is a meta-compiler supporting reference attribute grammars (RAGs)
● JastAdd fulfills these requirements!

○ https://jastadd.cs.lth.se/web/

CodeProber requirements

https://jastadd.cs.lth.se/web/

● Properties must be represented as methods on nodes.
● Must have source code location in normal nodes
● Must be able to traverse the tree

○ (To support the “exploration” aspect of clicking the output of the probe)

● JastAdd is a meta-compiler supporting reference attribute grammars (RAGs)
● JastAdd fulfills these requirements!

○ https://jastadd.cs.lth.se/web/
● Non-JastAdd tools can work too

CodeProber requirements

https://jastadd.cs.lth.se/web/

Node Locators
How we track AST nodes across multiple edits to a source file

Terminology

A step connects parent and child nodes.

A list of steps is called a “node locator”.
Block

List

VarDecl

Stmt

A step connects parent and child nodes.

A list of steps is called a “node locator”.

What step types exist, and how do you combine them?

● 🏃 Speed
● 🎯 Accuracy

Terminology

Block

List

VarDecl

Stmt

1) Child

E.g “node.getChild(3)”

AST Step types

👍 Fast
👎 Overly specific (brittle)

1) Child

E.g “node.getChild(3)”

2) FN (“Function”)

E.g “node.desugar()”

AST Step types

👍 Fast
👎 Overly specific (brittle)

👍 Versatile
👎 Hard to (automatically) create

1) Child

E.g “node.getChild(3)”

2) FN (“Function”)

E.g “node.desugar()”

3) TAL (“Type At Location”)

E.g “CallExpr at line 7, column 12”

AST Step types

👍 Fast
👎 Overly specific (brittle)

👍 Versatile
👎 Hard to (automatically) create

👍 Resilient
👎 Sometimes slow and/or ambiguous

Node Locator samples

Node Locator samples

[Child(0), TAL(5:15,5:16,13,IntegerLiteral)]

Pick first file Search within single file (fast)

Node Locator samples

[Child(0), TAL(5:15,5:16,13,IntegerLiteral)]

(CFG Entry)
[Child(0), TAL(3:1,6:1,4,MethodDecl), FN(“entry”)]

(String type)
[FN(“getLibCompilationUnit”, “java.lang.String”),
 TAL(0:0,0:0,2,ClassDecl)]

Node Locator samples

[Child(0), TAL(5:15,5:16,13,IntegerLiteral)]

(CFG Entry)
[Child(0), TAL(3:1,6:1,4,MethodDecl), FN(“entry”)]

Thank you for listening!

https://youtu.be/d-KvFy5h9W0 https://git.cs.lth.se/an6308ri/code-prober

5min demo Source code

https://youtu.be/d-KvFy5h9W0
https://git.cs.lth.se/an6308ri/code-prober

< Bonus slides >

(Not shown during presentation)

Creating Node Locators: 2 steps

Result: [FN(“desugar”), Child(3), Child(5)]

Step 1 - construct naive locator

Block

Stmt

FN(“desugar”)

Child(3)

Child(5)

List

VarDecl
loc:10:20

Input: [FN(“desugar”), Child(3), Child(5)]

For each sequence of 1+ ‘Child’ steps:

if (sequence as ‘TAL’ is unambiguous) {

replace sequence with a single TAL

}

Result: [FN(“desugar”), TAL(10:20,VarDecl))

Step 2 - Merge Child into TAL

Block

List

VarDecl
loc:10;20

Stmt

