
1

The One DevOps Platform

A Go micro language 
framework for building 
Domain Specific 
Languages



2

whoami



3

$ whoami

● Julian Thome
● Bitburg, Germany -> Zweibrücken (Dipl.-Inf. (FH)) -> 

Saarbrücken, Germany (MSc) -> Luxembourg (PhD)
● Areas of (research/engineering) interests:

- Security
- Programming Languages and Compilers
- Symbolic Execution

● Vulnerability Research Engineer @ GitLab since 2019

https://en.wikipedia.org/wiki/Bitburg
https://en.wikipedia.org/wiki/Zweibr%C3%BCcken
https://en.wikipedia.org/wiki/Saarbr%C3%BCcken
https://en.wikipedia.org/wiki/Belval,_Luxembourg
https://about.gitlab.com/handbook/engineering/development/sec/secure/vulnerability-research/
https://about.gitlab.com/


4

Vulnerability Research @ GitLab

https://about.gitlab.com/handbook/engineering/development/sec/secure/vulnerability-research/
https://about.gitlab.com/handbook/engineering/development/sec/secure/vulnerability-research/


5

Vulnerability Research @ GitLab - Product Research and AppSec

ProductResearch Vulnerability Research

Application
Security

5



6

Vulnerability Research @ GitLab

● Mark Art - Vulnerability Research Manager
● Australia
● Team & product direction

● Isaac Dawson - Staff Vulnerability Research Engineer
● Japan
● DAST/Browser specialist

6



7

Vulnerability Research @ GitLab

● Dinesh Bolkensteyn - Sr. Vulnerability Research Engineer
● Switzerland
● SAST specialist

● Michael Henriksen - Sr. Vulnerability Research Engineer
● Denmark
● Web application security specialist

7



8

Vulnerability Research @ GitLab

● Experiment with technology
● Advance GitLab’s capabilities in Security
● Proof-of-concepts (PoC’s) to improve the product

● Curate and maintain the GitLab Advisory Database
● Facilitate the CNA (CVE Numbering Authority) 

relationship
● We curate software vulnerability feeds in and out 

of GitLab

8

https://gitlab.com/gitlab-org/advisories-community
https://about.gitlab.com/handbook/engineering/development/secure/glossary-of-terms/


9

LinGo: A Go micro language framework 
for building Domain Specific Languages

https://about.gitlab.com/blog/2022/05/26/a-go-micro-language-framework-for-building-dsls/


10

Motivation - Context

● GitLab is a DevOps Platform.
● Main programming languages: Go, Ruby
● We are striving towards keeping the ECO 

systems we are working with as reduced as 
possible in order to prevent the build-up of 
technology or knowledge silos. 



11

Motivation - Configuration-as-code

● GitLab ships a variety of different CI/CD tools (for 
example SAST/DAST) some of which are developed 
internally.

● We follow the configuration-as-code principle where 
our CI configuration format.

https://docs.gitlab.com/ee/ci/quick_start/


12

Motivation - Problem

- Tool for FP elimination.
- Iterator design.
- Parsing and evaluation potentially close.
- Language was developed iteratively from scratch.

re-release/shipfix/refine/incorporate idea

Feedback



13

Motivation - “Micro-language” Requirements

1. Stability: Changes applied to the DSL should neither require 
any changes to the core lexer/parser implementation nor to 
the language processor implementation.

2. Flexibility/Composability: New DSL concepts (data-types, 
functions) can be integrated via a simple plug-in mechanism.

3. Simplicity: the language framework should have just enough 
features to provide a foundation that is powerful enough to 
implement and evolve a custom DSLs. In addition, the whole 
implementation of the micro language framework should be in 
pure Go so that it is easily embeddable in Go applications.



14

Motivation - Available DSL tools

There are great tools that help with DSL development
● Language frameworks/workbenches: Xtext, MPS
● Parser generators: ANTLR, bison, tree-sitter, text-mapper
● Meta-languages and interpreter modules: Racket, go-lua, yaegi, 

zygomys

Integration and Maintenance Cost

Language Frameworks

Parser Generators

Standard data-format parser

Micro-language Framework

Meta-languages/modules
#Features

https://www.eclipse.org/Xtext/
https://www.jetbrains.com/mps/
https://www.antlr.org/
https://www.gnu.org/software/bison/
https://tree-sitter.github.io/tree-sitter/
https://github.com/inspirer/textmapper
https://racket-lang.org/
https://github.com/Shopify/go-lua
https://github.com/traefik/yaegi
https://github.com/glycerine/zygomys


15

LinGo

https://about.gitlab.com/blog/2022/05/26/a-go-micro-language-framework-for-building-dsls/


16

LinGo

1. Micro-language framework to design your LISP-based Domain Specific 
Languages in Go.

2. ~3K lines of pure Go code.
3. S-expressions in prefix notation.
4. Macro support.
5. Evaluator uses depth-first traversal in post-order.
6. Lingo is designed in such a way that new functions can be plugged-in by 

implementing an interface and registering the newly implemented function to 
make it available.

https://en.wikipedia.org/wiki/Polish_notation


17

Demo

17

https://gitlab.com/julianthome/lingo-example
https://gitlab.com/julianthome/lingo-example


18

Demo - Random Text Generator: A data generation engine used for fuzzing

balances.csv

computebalance.rb

computebalance.awk



19

Motivation - Language concepts to include

Our RTG language includes the following functions:

1. (oneof s0, s1, ..., sN): randomly returns one of the parameter strings.

2. (join s0, s1, ..., sN): joins all strings.

3. (genfloat min max): generates a random float number and returns it.

4. (times num exp): repeats the pattern generated by exp num times.



20

Summary



21

Summary



22

Thank You


