
MPS Coderules: 
Constraint 
programming for 
type inference
—

Clément de La Bourdonnaye
Aachen - Sept 2022



Presentation outline
—

• Why Coderules?

• Constraint programming basics

• Demo: constraints program as type system

• MPS Kotlin and Coderules implementation



Why Coderules?
—

➔ Legacy typesystem 
definition shortcomings

◆ Pre-defined instructions
● No customization
● Precise behavior hard to 

grasp

◆ Complex language features 
impossible to express 



Constraint?
—



Constraint handling 
rules
—

Match ru
le 

head 

Remove constraints 
marked with ~

Create constraints 

from rule body



Logical variables and 
patterns
—

➔ Coderules terms
◆ Internal structure
◆ Can hold children variables

➔ Logical variables
◆ Placeholder for value 

unknown yet
◆ Can be used now, assigned 

later
➔ Patterns

◆ Complex matching for rules 
head



Coderules: augmented 
rules definition

—

➔ Java code
◆ Templates
◆ Evaluations during rule 

processing
➔ Macros

◆ High code reusability
◆ Before rule processing

➔ Rules made for MPS 
nodes
◆ Rules specific to nodes 

(typing rules, inheritance…)



Live Demo
—

Let’s go!



Conclusion
—

Legacy type system Coderules

➔ Built-in behaviour
◆ Limited control
◆ Hard to debug or understand

➔ One format for all languages

➔ Full control on each aspect of the 
typesystem

➔ Readable debugging

➔ More extensibility and flexibility

➔ One implementation per language
◆ Working on a new language requires 

learning its internals
◆ but easy access to sources



jetbrains.com

Thank you 
for your attention
—

https://sites.google.com/jetbrains.com/mps-coderules-links

http://jetbrains.com

